

Welcome to Tsung’s documentation!

Everything you need to know about Tsung

About Tsung

Tsung is a high-performance benchmark framework for various protocols
including HTTP, XMPP, LDAP, etc

	Website: tsung.erlang-projects.org [http://tsung.erlang-projects.org/]

	Source code: github.com/processone/tsung [https://github.com/processone/tsung/]

	Bugtracker: ` <https://github.com/processone/tsung/issues>`

	1. Introduction
	1.1. What is Tsung?

	1.2. What is Erlang and why is it important for Tsung?

	1.3. Tsung background

	2. Features
	2.1. Tsung main features

	2.2. HTTP related features

	2.3. WEBDAV related features

	2.4. Jabber/XMPP related features

	2.5. PostgreSQL related features

	2.6. MySQL related features

	2.7. Websocket related features

	2.8. AMQP related features

	2.9. MQTT related features

	2.10. LDAP related features

	2.11. Raw plugin related features

	2.12. Complete reports set

	2.13. Highlights

	3. Installation
	3.1. Dependencies

	3.2. Compilation

	3.3. Configuration

	3.4. Running

	3.5. Feedback

	4. Benchmark Approach
	4.1. HTTP/WebDAV

	4.2. LDAP

	4.3. PostgreSQL

	4.4. MySQL

	4.5. Jabber/XMPP

	5. Using the proxy recorder
	5.1. PostgreSQL

	5.2. HTTP and WEBDAV

	6. Understanding tsung.xml configuration file
	6.1. File structure

	6.2. Clients and server

	6.3. Monitoring

	6.4. Defining the load progression

	6.5. Setting options

	6.6. Sessions

	6.7. Advanced Features

	7. Statistics and Reports
	7.1. File format

	7.2. Available stats

	7.3. Design

	7.4. Generating the report

	7.5. Tsung summary

	7.6. Graphical overview

	7.7. Tsung Plotter

	7.8. RRD

	8. References

	9. Acknowledgments

	10. Frequently Asked Questions
	10.1. Can’t start distributed clients: timeout error

	10.2. Tsung crashes when I start it

	10.3. Why do i have error_connect_emfile errors?

	10.4. Tsung still crashes/fails when I start it!

	10.5. Can I dynamically follow redirect with HTTP?

	10.6. What is the format of the stats file tsung.log?

	10.7. How can I compute percentile/quartiles/median for transactions or requests response time?

	10.8. How can I specify the number of concurrent users?

	10.9. SNMP monitoring doesn’t work?!

	10.10. How can i simulate a fix number of users?

	11. Errors list
	11.1. error_closed

	11.2. error_inet_<ERRORNAME>

	11.3. error_unknown_data

	11.4. error_unknown_msg

	11.5. error_unknown

	11.6. error_repeat_<REPEATNAME>

	11.7. error_send_<ERRORNAME>

	11.8. error_send

	11.9. error_connect_<ERRORNAME>

	11.10. error_no_online

	11.11. error_no_offline

	11.12. error_no_free_userid

	11.13. error_next_session

	11.14. error_mysql_<ERRNO>

	11.15. error_mysql_badpacket

	11.16. error_pgsql

	12. Changelog

	13. tsung-1.0.dtd

Indices and tables

	Index

	Search Page

1. Introduction

1.1. What is Tsung?

Tsung (formerly IDX-Tsunami) is a distributed load testing
tool. It is protocol-independent and can currently be used to stress
HTTP, WebDAV, SOAP, PostgreSQL, MySQL, AMQP, MQTT, LDAP and Jabber/XMPP servers.

It is distributed under the GNU General Public License version 2.

1.2. What is Erlang and why is it important for Tsung?

Tsung’s main strength is its ability to simulate a huge number of
simultaneous user from a single machine; moreover, you can distribute
the users on cluster for machines. When used on cluster, you can
generate a really impressive load on a server with a modest cluster,
easy to set-up and to maintain. You can also use Tsung on a cloud like
EC2.

Tsung is developed in Erlang and this is where the power of
Tsung resides.

Erlang is a concurrency-oriented programming language.
Tsung is based on the Erlang OTP (Open Telecom Platform) and
inherits several characteristics from Erlang:

	Performance

	Erlang has been made to support hundred thousands of
lightweight processes in a single virtual machine.

	Scalability

	Erlang runtime environment is naturally distributed,
promoting the idea of process’s location transparency.

	Fault-tolerance

	Erlang has been built to develop robust,
fault-tolerant systems. As such, wrong answer sent from the server
to Tsung does not make the whole running benchmark crash.

More information on Erlang on http://www.erlang.org.

1.3. Tsung background

History:

	Tsung development was started by Nicolas Niclausse in
2001 as a distributed jabber load stress tool for internal use at
http://IDEALX.com/ (now OpenTrust). It has evolved as an open-source
multi-protocol load testing tool several months later. The HTTP
support was added in 2003, and this tool has been used for several
industrial projects. It is now hosted on github, and
several companies provide profesionnal support. The list of contributors
is available in the source archive at https://github.com/processone/tsung/blob/master/CONTRIBUTORS.

	It is an industrial strength implementation of a stochastic model
for real users simulation. User events distribution is based on a Poisson Process. More information on this topic in:

Z. Liu, N. Niclausse, and C. Jalpa-Villanueva. Traffic Model
and Performance Evaluation of Web Servers. Performance Evaluation, Volume 46, Issue 2-3, October 2001.

	This model has already been tested in the INRIA WAGON
research prototype (Web trAffic GeneratOr and beNchmark). WAGON was
used in the http://www.vthd.org/ project (Very High Broadband
IP/WDM test platform for new generation Internet applications, 2000-2004).

Tsung has been used for very high load tests:

	Jabber/XMPP protocol:
	90,000 simultaneous Jabber users on a 4-node Tsung cluster (3xSun V240 + 1 Sun V440).

	10,000 simultaneous users. Tsung was running on a 3-computers cluster (CPU 800MHz).

	2,000,000 concurrent users on a single m4.10xlarge instance on EC2 to tests ejabberd scalability

	HTTP and HTTPS protocol:
	12,000 simultaneous users. Tsung were running on a 4-computers cluster (in 2003).
The tested platform reached 3,000 https requests per second.

	10 million simultaneous users running on a 75-computers cluster, generating more
than one million requests per second.

Tsung has been used at:

	DGI (Direction Générale des impôts): French finance ministry

	Cap Gemini Ernst & Young

	IFP (Institut Français du Pétrole): French Research Organization
for Petroleum

	LibertySurf

	Sun (TM) for their Moodlerooms platform on Niagara processors: https://blogs.oracle.com/kevinr/resource/Moodle-Sun-RA.pdf

	and many other companies

2. Features

2.1. Tsung main features

	High Performance: Tsung can simulate a huge number of
simultaneous users per physical computer: It can simulates thousands
of users on a single CPU (Note: a simulated user is not always
active: it can be idle during a thinktime
period). Traditional injection tools can hardly go further than a
few hundreds (Hint: if all you want to do is requesting a single URL
in a loop, use ab; but if you want to build complex
scenarios with extended reports, Tsung is for you).

	Distributed: the load can be distributed on a cluster of client machines

	Multi-Protocols using a plug-in system: HTTP (both standard web
traffic and SOAP), WebDAV, Jabber/XMPP and PostgreSQL are currently
supported. LDAP and MySQL plugins were first included in the 1.3.0 release.

	SSL support

	Several IP addresses can be used on a single machine using the underlying OS IP Aliasing

	OS monitoring (CPU, memory and network traffic) using Erlang agents on remote servers or SNMP

	XML configuration system: complex user’s scenarios are
written in XML. Scenarios can be written with a simple browser using the
Tsung recorder (HTTP and PostgreSQL only).

	Dynamic scenarios: You can get dynamic data from the
server under load (without writing any code) and re-inject it in
subsequent requests. You can also loop, restart or stop a
session when a string (or regexp) matches the server response.

	Mixed behaviours: several sessions can be used to simulate
different type of users during the same benchmark. You can define
the proportion of the various behaviours in the benchmark scenario.

	Stochastic processes: in order to generate a realistic
traffic, user thinktimes and the arrival rate can be randomized
using a probability distribution (currently exponential)

2.2. HTTP related features

	HTTP/1.0 and HTTP/1.1 support

	GET, POST, PUT, DELETE, HEAD, OPTIONS and PATCH requests

	Cookies: Automatic cookies management (but you can also manually add
more cookies)

	‘GET If-modified since’ type of request

	WWW-authentication Basic and Digest. OAuth 1.0

	User Agent support

	Any HTTP Headers can be added

	Proxy mode to record sessions using a Web browser

	SOAP support using the HTTP mode (the SOAPAction HTTP header is
handled).

	HTTP server or proxy server load testing.

2.3. WEBDAV related features

The WebDAV (RFC 4918 [https://tools.ietf.org/html/rfc4918.html]) plugin is a superset of the HTTP plugin. It adds the
following features (some versionning extensions to WebDAV (RFC 3253 [https://tools.ietf.org/html/rfc3253.html])
are also supported):

	Methods implemented: DELETE, CONNECT, PROPFIND, PROPPATCH, COPY,
MOVE, LOCK, UNLOCK, MKCOL, REPORT, OPTIONS, MKACTIVITY, CHECKOUT, MERGE

	Recording of DEPTH, IF, TIMEOUT OVERWRITE, DESTINATION, URL and
LOCK-TOKEN Headers.

2.4. Jabber/XMPP related features

	Authentication (plain-text, digest and sip-digest). STARTTLS

	presence and register messages

	Chat messages to online or offline users

	MUC: join room, send message in room, change nickname

	Roster set and get requests

	Global users’ synchronization can be set on specific actions

	BOSH & XMPP over Websocket

	raw XML messages

	PubSub

	Multiple vhost instances supported

	privacy lists: get all privacy list names, set list as active

2.5. PostgreSQL related features

	Basic and MD5 Authentication

	Simple Protocol

	Extended Protocol (new in version 1.4.0)

	Proxy mode to record sessions

2.6. MySQL related features

This plugin is experimental. It works only with MySQL version 4.1 and higher.

	Secured Authentication method only (MySQL >= 4.1)

	Basic Queries

2.7. Websocket related features

This plugin is experimental. It only supports RFC 6455 [https://tools.ietf.org/html/rfc6455.html] currently.
For used as a server type, it works like other transport protocol like
tcp and udp, any application specific protocol data can be send on it.

You can find examples used as session type in examples/websocket.xml.

	Both as a server type and session type

2.8. AMQP related features

This plugin is experimental. It only supports AMQP-0.9.1 currently.
You can find examples in examples/amqp.xml.

	Basic publish and consume

	Publisher confirm and consumer ack

	QoS

2.9. MQTT related features

This plugin is experimental. It supports MQTT V3.1.
You can find examples in examples/mqtt.xml.

	Connect to mqtt broker with options

	Publish mqtt messages to the broker

	Subscribe/unsubscribe topics

	Support QoS 0 and QoS 1

2.10. LDAP related features

	Bind

	Add, modify and search queries

	Starttls

2.11. Raw plugin related features

	TCP / UDP / SSL compatible

	raw messages

	no_ack, local or global ack for messages

2.12. Complete reports set

Measures and statistics produced by Tsung are extremely feature-full.
They are all represented as a graphic. Tsung produces
statistics regarding:

	Performance: response time, connection time, decomposition of the
user scenario based on request grouping instruction (called
transactions), requests per second

	Errors: Statistics on page return code to trace errors

	Target server behaviour: An Erlang agent can gather information
from the target server(s). Tsung produces graphs for CPU and memory
consumption and network traffic. SNMP and munin is also supported to
monitor remote servers.

par Note that Tsung takes care of the synchronization process by itself. Gathered statistics are «synchronized».

It is possible to generate graphs during the benchmark as statistics are gathered in real-time.

2.13. Highlights

Tsung has several advantages over other injection tools:

	High performance and distributed benchmark: You can use Tsung to simulate tens of thousands of virtual users.

	Ease of use: The hard work is already done for all supported
protocol. No need to write complex scripts. Dynamic scenarios only requires small trivial piece of code.

	Multi-protocol support: Tsung is for example one of the only tool to benchmark SOAP applications

	Monitoring of the target server(s) to analyze the behaviour and
find bottlenecks. For example, it has been used to analyze cluster
symmetry (is the load properly balanced ?) and to determine the best
combination of machines on the three cluster tiers (Web engine, EJB
engine and database)

3. Installation

This package has been tested on Linux, FreeBSD and Solaris. A port is
available on Mac OS X. It should work on Erlang supported platforms
(Linux, Solaris, *BSD, Win32 and Mac OS X).

On Mac OS X you can install Tsung via Homebrew (http://brew.sh/): brew install tsung.

3.1. Dependencies

	Erlang/OTP R16B03 and up (download [http://www.erlang.org/download.html]).

	pgsql module made by Christian Sunesson (for the PostgreSQL plugin):
sources available at http://jungerl.sourceforge.net/ . The module is
included in the source and binary distribution of Tsung. It
is released under the EPL License.

	mysql module made by Magnus Ahltorp & Fredrik Thulin (for the mysql plugin):
sources available at
http://www.stacken.kth.se/projekt/yxa/. The modified module is
included in the source and binary distribution of Tsung. It
is released under the three-clause BSD License.

	mochiweb libs (for XPath parsing, optionally used for dynamic variables in the HTTP plugin):
sources available at https://github.com/mochi/mochiweb. The module
is included in the source and binary distribution of Tsung. It
is released under the MIT License.

	gnuplot and perl5 (optional; for graphical output with
tsung_stats.pl script). The Template Toolkit is used for HTML
reports (see http://template-toolkit.org/).

	python and matplotlib (optional; for graphical output with tsung-plotter).

	for distributed tests, you need SSH access to remote machines
without password (use a RSA/DSA key without passphrase or
ssh-agent). Alternatively rsh is also supported.

	bash

3.2. Compilation

To compile Tsung, just download the latest version from http://tsung.erlang-projects.org/dist/ and run:

./configure
make
make install

If you want to download the latest development version, use git:

git clone https://github.com/processone/tsung.git, see also https://github.com/processone/tsung.

You can also build packages with make deb (on Debian and Ubuntu) and
make rpm (on Fedora, RHEL and other rpm based distribution).

3.3. Configuration

The default configuration file is ~/.tsung/tsung.xml (there
are several sample files in /usr/share/doc/tsung/examples).

Log files are saved in ~/.tsung/log/. A new subdirectory
is created for each test using the current date and time as name,
e.g. ~/.tsung/log/20040217-0940.

3.4. Running

Two commands are installed in the directory $PREFIX/bin:
tsung and tsung-recorder. A man page is available for both commands.

$ tsung -h
Usage: tsung <options> start|stop|debug|status
Options:
 -f <file> set configuration file (default is ~/.tsung/tsung.xml)
 (use - for standard input)
 -l <logdir> set log directory where YYYYMMDD-HHMM dirs are created (default is ~/.tsung/log/)
 -i <id> set controller id (default is empty)
 -r <command> set remote connector (default is ssh)
 -s enable erlang smp on client nodes
 -p <max> set maximum erlang processes per vm (default is 250000)
 -X <dir> add additional erlang load paths (multiple -X arguments allowed)
 -m <file> write monitoring output on this file (default is tsung.log)
 (use - for standard output)
 -F use long names (FQDN) for erlang nodes
 -L <lifetime> SSL session lifetime (600sec by default)
 -w <delay> warmup delay (default is 1 sec)
 -n disable web GUI (started by default on port 8091)
 -k keep web GUI (and controller) alive after the test has finished
 -v print version information and exit
 -6 use IPv6 for Tsung internal communications
 -x <tags> list of requests tag to be excluded from the run (separated by comma)
 -t <min> erlang inet listening TCP port min (default: 64000)
 -T <max> erlang inet listening TCP port max (default: 65500)
 -h display this help and exit

A typical way of using tsung is to run: tsung -f myconfigfile.xml start.

The command will print the current log directory created for the test,
and wait until the test is over. By default an embedded web server
will be started on the controller node and will listen on the 8091
port (this can be disabled with the -n option.

3.5. Feedback

Use the Tsung mailing list [https://lists.process-one.net/mailman/listinfo/tsung-users] if you have
suggestions or questions about Tsung. You can also use the
bug tracker available at https://github.com/processone/tsung/issues

You can also try the #tsung IRC channel on Freenode.

4. Benchmark Approach

4.1. HTTP/WebDAV

4.1.1. Benchmarking a Web server

	Record one or more sessions: start the recorder with:
tsung-recorder start, and then configure your browser to use Tsung
proxy recorder (the listen port is 8090). A session file will be
created. For HTTPS recording, use http://- instead of
https:// in your browser.

	Edit / organize scenario, by adding recorded sessions in the
configuration file.

	Write small code for dynamic parts if needed and place dynamic mark-up
in the scenario.

	Test and adjust scenario to have a nice progression of the load. This
is highly dependent of the application and of the size of the target
server(s). Calculate the normal duration of the scenario and use the
interarrival time between users and the duration of the phase to estimate
the number of simultaneous users for each given phase.

	Launch benchmark with your first application parameters setup:
tsung start (run man tsung for more options).

	Wait for the end of the test or stop by hand with
tsung stop (reports can also be generated during the
test (see Statistics and Reports): the statistics are
updated every 10 seconds). For a brief summary of the current
activity, use tsung status.

	Analyze results, change parameters and relaunch another benchmark.

4.1.2. WebDAV

It’s the same approach as HTTP: first you start to record one or more
sessions with the recorder:
tsung-recorder -p webdav start.

4.1.3. Benchmarking a proxy server

By default, the HTTP plugin is used to benchmark HTTP servers. But you
can also benchmark HTTP Proxy servers. To do that, you must add in the
options section:

<option type="ts_http" name="http_use_server_as_proxy" value="true"></option>

4.2. LDAP

An LDAP plugin for the recorder is not yet implemented, so you have to
write the session by yourself; see section Authentication for
more information.

4.3. PostgreSQL

It’s the same approach as HTTP: first you start to record one or more
sessions with the recorder: tsung-recorder -p pgsql start.

This will start a proxy listening to port 8090 and will proxy requests
to 127.0.0.0:5432.

To choose another port and/or address:
tsung-recorder -L 5432 -I 10.6.1.1 -P 5433 -p pgsql start.

This will start a proxy listening to port 5432 and will proxy requests
to 10.6.1.1:5433.

4.4. MySQL

A MySQL plugin for the recorder is not yet implemented, so you have to
write the session by yourself; see section MySQL for
more information.

4.5. Jabber/XMPP

4.5.1. Overview

This paragraph explains how to write a session for Jabber/XMPP.

There are two differences between HTTP and Jabber testing:

	There is no recorder for Jabber, so you have to write your
sessions by hand. An example is provided in
Jabber/XMPP.

	The Jabber plugin does not parse XML; instead it uses packet
acknowledgments.

4.5.2. Acknowledgments of messages

Since the Jabber plugin does not parse XML (historically, it was for
performance reasons), you must have a way to tell when a request is
finished. There are 3 possibilities using the ack attribute:

	ack="local" as soon as a packet is received from the server, the
request is considered as completed. Hence if you use a local ack with a request
that do not require a response from the server (presence for ex.), it
will wait forever (or until a timeout is reached).

	ack="no_ack" as soon as the request is send, it is considered as completed (do
not wait for incoming data).

	ack="global" synchronized users. its main use is for waiting for all
users to connect before sending messages. To do that, set a request
with global ack (it can be the first presence msg:

<request> <jabber type="presence" ack="global"/> </request>

You also have to specify the number of users to be connected:

<option type="ts_jabber" name="global_number" value="100"></option>

To be sure that exactly global_number users are started, add the
maxnumber attribute to users:

<users maxnumber="100" interarrival="1.0" unit="second"></users>

If you do not specify maxnumber, the global ack will be reset every
global_number users.

4.5.2.1. Bidirectional Presence

New in 1.2.2: This version adds an new option for a
session. if you set the attribute bidi (for bidirectional)
in the <session> tag: <session ... bidi="true">,
then incoming messages from the server will be analyzed. Currently,
only roster subscription requests are handled: if a user received a
subscription request (<presence ... type="subscribe">), it
will respond with a <presence ... type="subscribed">
message.

4.5.2.2. Status: Offline, Connected and Online

You can send messages to offline or online users. A user is considered
online when he has send a presence:initial message (before
this message , the state of the user is connected).

If you want to switch back to connected before going
offline, you can use a presence:final message:

presence:final does two things:

	It removes the client from the list of Online users, and moves
them into the list of Connected users.

	It sends a broadcast presence update of type="unavailable".

presence:final is optional.

Warning: this is new in 1.2.0, in earlier version, only 2
status were available: online and offline; a user was considered
online as soon as it was connected.

4.5.3. Authentication

Below are configuration examples for the possible authentication
methods. Note: the regular expressions used here are only examples -
they may need to be altered depending on how a particular server
implementation composes messages (see also Websocket options
for password settings).

	plain authentication - sends clear-text passwords:

<session probability="100" name="jabber-plain" type="ts_jabber">

 <request> <jabber type="connect" ack="local"></jabber> </request>

 <thinktime value="2"></thinktime>

 <transaction name="auth_plain">
 <request> <jabber type="auth_get" ack="local"></jabber> </request>
 <request> <jabber type="auth_set_plain" ack="local"></jabber> </request>
 </transaction>
 ...
</session>

	digest authentication as described in XMPP JEP-0078: Non-SASL Authentication
http://www.jabber.org/jeps/jep-0078.html

<session probability="100" name="jabber-digest" type="ts_jabber">

 <!-- regexp captures stream ID returned by server -->
 <request>
 <dyn_variable name="sid" re="<stream:stream id="(.*)" xmlns:stream"/>
 <jabber type="connect" ack="local"></jabber>
 </request>

 <thinktime value="2"></thinktime>

 <transaction name="auth_digest">
 <request> <jabber type="auth_get" ack="local"></jabber> </request>
 <request subst="true"> <jabber type="auth_set_digest" ack="local"></jabber> </request>
 </transaction>
 ...
</session>

	sip-digest authentication

 <session probability="100" name="jabber-sipdigest" type="ts_jabber">

 <request> <jabber type="connect" ack="local"></jabber> </request>

 <thinktime value="2"></thinktime>

<transaction name="auth_sipdigest">
 <!-- regexp captures nonce value returned by server -->
 <request>
 <dyn_variable name="nonce"
 re="<Nonce encoding="hex">(.*)<\/Nonce>"/>
 <jabber type="auth_get" ack="local"></jabber>
 </request>
 <request subst="true"> <jabber type="auth_set_sip" ack="local"></jabber> </request>
</transaction>
...
</session>

4.5.4. Privacy list testing

There are two actions available to allow for rudimentary privacy lists
load testing:

	privacy:get_names gets the list of all names
.. of privacy lists stored by the server for a given user

	privacy:set_active sets a list with a predefined
name as active. The list name is determined from the JID,
e.g. if the user’s JID is “john@average.com” then the list name
is “john@average.com_list”. One should take care of properly seeding
the server database in order to ensure that such a list exists.

5. Using the proxy recorder

The recorder has three plugins: for HTTP, WebDAV and for PostgreSQL.

To start it, run tsung-recorder -p <PLUGIN> start, where PLUGIN can be
http, webdav or pgsql for PostgreSQL. The default plugin is http.

The proxy is listening to port 8090. You can change the port with
-L portnumber.

To stop it, use tsung-recorder stop.

The recorded session is created as
~/.tsung/tsung_recorderYYYMMDD-HH:MM.xml; if it doesn’t work,
take a look at ~/.tsung/log/tsung.log-tsung_recorder@hostname

During the recording, you can add custom tag in the XML file, this can
be useful to set transactions or comments:
tsung-recorder record_tag "<transaction name='login'>''

Once a session has been created, you can insert it in your main configuration
file, either by editing by hand the file, or by using an ENTITY
declaration, like:

<!DOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd" [
 <!ENTITY mysession1 SYSTEM "/home/nniclausse/.tsung/tsung_recorder20051217-13:11.xml">
]>
...
<sessions>
 &mysession1;
</sessions>

5.1. PostgreSQL

For PostgreSQL, the proxy will connect to the server at IP 127.0.0.1
and port 5432. Use -I serverIP to change the IP and
-P portnumber to change the port.

5.2. HTTP and WEBDAV

For HTTPS recording, use http://- instead of
https:// in your browser

New in 1.2.2: For HTTP, you can configure the recorder to use a parent proxy (but this will not work for https). Add the -u
option to enable parent proxy, and use -I serverIP to set the IP and -P portnumber to set the port of the parent.

6. Understanding tsung.xml configuration file

	6.1. File structure

	6.2. Clients and server
	6.2.1. Basic setup

	6.2.2. Advanced setup
	6.2.2.1. direct ip

	6.2.2.2. iprange

	6.2.2.3. maxusers

	6.2.3. Running Tsung with a job scheduler

	6.3. Monitoring
	6.3.1. Erlang

	6.3.2. SNMP

	6.3.3. Munin

	6.4. Defining the load progression
	6.4.1. Randomly generated users

	6.4.2. Statically generated users

	6.4.3. Duration of the load test

	6.5. Setting options
	6.5.1. Thinktimes, SSL, Buffers

	6.5.2. Timeout for TCP connections

	6.5.3. IP transparent

	6.5.4. Retry Attempts and Timeouts

	6.5.5. Timeout for acknowledgments of messages

	6.5.6. Hibernate

	6.5.7. Rate_limit

	6.5.8. Ports_range

	6.5.9. Setting the seed for random numbers

	6.5.10. Path for BOSH

	6.5.11. Websocket options

	6.5.12. XMPP/Jabber options

	6.5.13. HTTP options

	6.5.14. AMQP options

	6.6. Sessions
	6.6.1. Thinktimes

	6.6.2. HTTP
	6.6.2.1. Authentication

	6.6.3. Jabber/XMPP
	6.6.3.1. Message stamping

	6.6.3.2. StartTLS

	6.6.3.3. Roster

	6.6.3.4. SASL Plain

	6.6.3.5. SASL Anonymous

	6.6.3.6. Presence

	6.6.3.7. MUC

	6.6.3.8. PubSub

	6.6.3.9. VHost

	6.6.3.10. Reading usernames and password from a CSV file

	6.6.3.11. raw XML

	6.6.3.12. resource

	6.6.4. PostgreSQL

	6.6.5. MySQL

	6.6.6. Websocket

	6.6.7. AMQP

	6.6.8. MQTT

	6.6.9. LDAP
	6.6.9.1. Authentication

	6.6.9.2. LDAP Setup

	6.6.9.3. Other examples

	6.6.10. Mixing session type

	6.6.11. Raw

	6.7. Advanced Features
	6.7.1. Dynamic substitutions

	6.7.2. Reading external file

	6.7.3. Dynamic variables
	6.7.3.1. Regexp

	6.7.3.2. XPath

	6.7.3.3. JSONPath

	6.7.3.4. PostgreSQL

	6.7.3.5. Decoding variables

	6.7.3.6. set_dynvars

	6.7.4. Checking the server’s response

	6.7.5. Loops, If, Foreach
	6.7.5.1. <for>

	6.7.5.2. <repeat>

	6.7.5.3. <if>

	6.7.5.4. <abort>

	6.7.5.5. <foreach>

	6.7.6. Rate limiting

	6.7.7. Requests exclusion

	6.7.8. Client certificate

6.1. File structure

The default encoding is utf-8. You can use a different encoding, like in:

<?xml version="1.0" encoding="ISO-8859-1"?>

Scenarios are enclosed into tsung tags:

<?xml version="1.0"?>
<!DOCTYPE tsung SYSTEM "/usr/share/tsung/tsung-1.0.dtd" [] >
<tsung loglevel="info">
...
</tsung>

If you add the attribute dumptraffic=”true”, all the
traffic will be logged to a file.

Warning

this will considerably slow down Tsung, so use with care. It is
useful for debugging purpose. You can use the attribute
dumptraffic=”light” to dump only the first 44 bytes.

Since version 1.4.0, you have also a specific logging per
protocol, using dumptraffic=”protocol”. It’s currently
only implemented for HTTP: this will log all requests in a CSV file,
with the following data:

#date;pid;id;http method;host;URL;HTTP status;size;duration;transaction;match;error;tag

Where:

	field
	description

	date
	timestamp at the end of the request (seconds since 1970-01-01 00:00:00 UTC)

	pid
	erlang process id

	id
	tsung user id

	host
	server hostname

	url
	URL (relative)

	HTTP
	status HTTP reponse status (200, 304, etc.)

	size
	reponse size (in bytes)

	duration
	request duration (msec)

	transaction
	name of the transaction (if any) this request was made in

	match
	if a match is defined in the request: match|nomatch (last <match> if several are defined)

	error
	name of http error (or empty)

	tag
	tag name if the request was tagged; empty otherwise

Warning

In the general case (several Tsung clients used), the resulting
file will not be sorted, so you may have to sort it before analyzing it.

For heavy load testing (tens of thousands requests per second), the
protocol logging may overload the controller. In this case, you can
use protocol_local instead. In this case, the log files will be
written on each slave locally. You will have to manually merged the
logs at the end of the test.

The loglevel can also have a great impact on performance:
For high load, warning is recommended.

Possible values are:

	emergency

	critical

	error

	warning

	notice (default)

	info

	debug

For REALLY verbose logging, recompile tsung with make debug
and set loglevel to debug.

6.2. Clients and server

Scenarios start with clients (Tsung cluster) and server definitions:

6.2.1. Basic setup

For non distributed load, you can use a basic setup like:

<clients>
 <client host="localhost" use_controller_vm="true"/>
</clients>

<servers>
 <server host="192.168.1.1" port="80" type="tcp"></server>
</servers>

This will start the load on the same host and on the same Erlang
virtual machine as the controller.

The server is the entry point into the cluster. You can add several
servers, by default each server will have a weight of 1, and each
session will choose a server randomly according to the weight. You can
set a weight for each server like this (weight can be an integer or
a float):

<servers>
 <server host="server1" port="80" type="tcp" weight="4"></server>
 <server host="server2" port="80" type="tcp" weight="1"></server>
</servers>

(in version older than 1.5.0, the weight option was
not implemented and a round robin algorithm was used to choose the
server).

Type can be tcp, ssl,
udp (for IPv6, use tcp6, ssl6 or
udp6 ; only available in version 1.4.2 and newer)
or websocket (only available in version 1.5.0 and newer))

There’s also a specific type fo BOSH: bosh for unencrypted BOSH, and bosh_ssl for encrypted connection

6.2.2. Advanced setup

The next example is more complex, and use several features for
advanced distributed testing:

<clients>
 <client host="louxor" weight="1" maxusers="800">
 <ip value="10.9.195.12"></ip>
 <ip value="10.9.195.13"></ip>
 </client>
 <client host="memphis" weight="3" maxusers="600" cpu="2"/>
</clients>

<servers>
 <server host="10.9.195.1" port="8080" type="tcp"></server>
</servers>

Several virtual IP can be used to simulate more machines. This is
very useful when a load-balancer use the client’s IP to
distribute the traffic among a cluster of servers. New in 1.1.1:
IP is no longer mandatory. If not specified, the default IP will be
used.

New in 1.4.0: You can use <ip scan="true" value="eth0"/> to scan for all the IP aliases on a given interface
(eth0 in this example).

In this example, a second machine is used in the Tsung cluster,
with a higher weight, and 2 cpus. Two Erlang virtual machines will be
used to take advantage of the number of CPU.

Note

Even if an Erlang VM is now able to handle several CPUs
(erlang SMP), benchmarks shows that it’s more efficient to use one VM
per CPU (with SMP disabled) for tsung clients. Only the controller node is using SMP
erlang. Therefore, cpu should be equal to the number of cores of
your nodes. If you prefer to use erlang SMP, add the -s
option when starting tsung (and don’t set cpu in the config
file).

By default, the load is distributed uniformly on all CPU (one CPU
per client by default). The weight parameter (integer) can be used to
take into account the speed of the client machine. For instance, if
one real client has a weight of 1 and the other client has a weight
of 2, the second one will start twice the number of users as the
first (the proportions will be 1/3 and 2/3). In the earlier example
where for the second client has 2 CPU and weight=3, the weight is
equal to 1.5 for each CPU.

6.2.2.1. direct ip

Sometimes, it can be a problem to use hostnames for all tsung clients
(if you don’t have a DNS, you must edit /etc/hosts on all
nodes). Since version in 1.7.0, you can use direct IP instead of
hostnames.

To do this, you should use the -I parameter when starting Tsung,

tsung -I Your_Server_IP -f tsung.xml start

eg:

tsung -I 10.10.10.10 -f tsung.xml start

You controller node name is therefore: tsung_controller@10.10.10.10.
For clients, put the IP like this:

<clients>
 <client host="10.10.10.11" maxusers="120000" cpu="7" weight="4"/>
 <client host="10.10.10.12" maxusers="120000" cpu="7" weight="4"/>
<clients>

6.2.2.2. iprange

If you have many IPs (thousands of IPs), the ip scan option can be
slow ; in this case you can use the iprange tag to generate a
random IP in a given range:

<iprange version="v4" value="172.28.1-20.0-254"/>

In the given example, the third and last part of the IPv4 address will
be random in the given range.

6.2.2.3. maxusers

The maxusers parameter is used to bypass the limit of maximum
number of sockets opened by a single process (1024 by default on many
OS) and the lack of scalability of the select system call. When
the number of users is higher than the limit, a new erlang virtual
machine will be started to handle new users. The default value of
maxusers is 800. Nowadays, with kernel polling enable, you can and
should use a very large value for maxusers (30000 for example)
without performance penalty (but don’t forget to raise the limit of
the OS with ulimit -n, see also Why do i have error_connect_emfile errors?).

Note

If you are using a tsung master with slaves, the master
distributes sessions to slaves. If a session contains multiples requests,
a slave will execute each of these requests in order.

6.2.3. Running Tsung with a job scheduler

Tsung is able to get its client node list from a batch/job
scheduler. It currently handle PBS/torque, LSF and OAR. To do this,
set the type attribute to batch, e.g.:

<client type="batch" batch="torque" maxusers="30000">

If you need to scan IP aliases on nodes given by the batch scheduler,
use scan_intf like this:

<client type="batch" batch="torque" scan_intf='eth0' maxusers="30000">

6.3. Monitoring

Tsung is able to monitor remote servers using several backends that
communicates with remote agent. This is configured in the <monitoring> section. Available
statistics are: CPU activity, load average and memory usage.

Note that you can get the nodes to monitor from a job scheduler, like:

<monitor batch="true" host="torque" type="erlang"></monitor>

Several types of remote agents are supported (erlang is the default):

6.3.1. Erlang

The remote agent is started by Tsung. It use erlang communications to
retrieve statistics of activity on the server. For example, here is a
cluster monitoring definition based on Erlang agents, for a cluster of
6 computers:

<monitoring>
 <monitor host="geronimo" type="erlang"></monitor>
 <monitor host="bigfoot-1" type="erlang"></monitor>
 <monitor host="bigfoot-2" type="erlang"></monitor>
 <monitor host="f14-1" type="erlang"></monitor>
 <monitor host="f14-2" type="erlang"></monitor>
 <monitor host="db" type="erlang"></monitor>
</monitoring>

Note

monitored computers needs to be accessible through the network, and
erlang communications must be allowed (no firewall is better). SSH
(or rsh) needs to be configured to allow connection without password
on. You must use the same version of Erlang/OTP on all nodes
otherwise it may not work properly!

If you can’t have erlang installed on remote servers, you can use one
of the other available agents.

New in version 1.5.1.

erlang monitoring includes now an option to monitor a mysql db with
mysqladmin. Use it like this:

<monitor host="db" type="erlang"></monitor>
 <mysqladmin port="3306" username="root" password="sesame" />
</monitor>

Availabe stats: number of mysql threads and Questions (queries)

6.3.2. SNMP

The type keyword snmp can replace the erlang keyword, if SNMP monitoring
is preferred. They can be mixed. Since version 1.2.2, you can customize the SNMP version,
community and port number. It uses the Management Information Base (MIB) provided in
net-snmp (see also SNMP monitoring doesn’t work?!).

<monitoring>
 <monitor host="geronimo" type="snmp"/>
 <monitor host="f14-2" type="erlang"></monitor>
 <monitor host="db" type="snmp">
 <snmp version="v2" community="mycommunity" port="11161"/>
 </monitor>
</monitoring>

The default version is v1, default community
public and default port 161.

Since version 1.4.2, you can also customize the object identifiers (OID)
retrieved from the SNMP server, using one or several oid
element:

<monitor host="127.0.0.1" type="snmp">
 <snmp version="v2">
 <oid value="1.3.6.1.4.1.42.2.145.3.163.1.1.2.11.0"
 name="heapused" type="sample" eval="fun(X)-> X/100 end."/>
 </snmp>
</monitor>

type can be sample, counter or
sum, and optionally you can define a function (with erlang
syntax) to be applied to the value (eval attribute).

6.3.3. Munin

New in version 1.3.1.

Tsung is able to retrieve data from a munin-node agent
(see http://munin-monitoring.org/wiki/munin-node). The type
keyword must be set to munin, for example:

<monitoring>
 <monitor host="geronimo" type="munin"/>
 <monitor host="f14-2" type="erlang"></monitor>
</monitoring>

6.4. Defining the load progression

6.4.1. Randomly generated users

The load progression is set-up by defining several arrival phases:

<load>
 <arrivalphase phase="1" duration="10" unit="minute">
 <users interarrival="2" unit="second"></users>
 </arrivalphase>

 <arrivalphase phase="2" duration="10" unit="minute">
 <users interarrival="1" unit="second"></users>
 </arrivalphase>

 <arrivalphase phase="3" duration="10" unit="minute">
 <users interarrival="0.1" unit="second"></users>
 </arrivalphase>
</load>

With this setup, during the first 10 minutes of the test, a new user
will be created every 2 seconds, then during the next 10 minutes, a
new user will be created every second, and for the last 10 minutes,
10 users will be generated every second. The test will finish when
all users have ended their session.

You can also use arrivalrate instead of
interarrival. For example, if you want 10 new users per
second, use:

<arrivalphase phase="1" duration="10" unit="minute">
 <users arrivalrate="10" unit="second"></users>
</arrivalphase>

You can limit the number of users started for each phase by using the
maxnumber attribute, just like this:

<arrivalphase phase="1" duration="10" unit="minute">
 <users maxnumber="100" arrivalrate="10" unit="second"></users>
</arrivalphase>
<arrivalphase phase="2" duration="10" unit="minute">
 <users maxnumber="200" arrivalrate="10" unit="second"></users>
</arrivalphase>

In this case, only 100 users will be created in the first phases, and
200 more during the second phase.

The complete sequence can be executed several times using the
loop attribute in the load tag
(loop='2' means the sequence will be looped twice, so the
complete load will be executed 3 times) (feature available since
version 1.2.2).

The load generated in terms of HTTP requests / seconds will also
depend on the mean number of requests within a session (if you have a
mean value of 100 requests per session and 10 new users per seconds,
the theoretical average throughput will be 1000 requests/ sec).

New in version 1.5.1.

You can also override the probability settings of sessions within a
specific phase, using session_setup:

<arrivalphase phase="3" duration="1" unit="minute">
 <session_setup name="http_test_1" probability="80"/>
 <session_setup name="fake" probability="20"/>
 <users interarrival="1" unit="second"/>
</arrivalphase>

New in version 1.7.0.

Be default, a phase ends when it’s duration has been reached, even if
all started sessions during the phase are not finished. You can
override this behavior If you want to start a new phase only after
all generated users in the previous phase have finished their
sessions, use the wait_all_sessions_end attribute, like this:

<arrivalphase phase="1" duration="10" unit="minute" wait_all_sessions_end="true">
 <users interarrival="1" unit="second"/>
</arrivalphase>
<arrivalphase phase="2" duration="10" unit="minute">
 <users interarrival="5" unit="second"/>
</arrivalphase>

(In this case, the real duration of the phase 1 will probably be higher than it’s configured one.)

6.4.2. Statically generated users

If you want to start a given session (see Sessions) at a given time during the test,
it is possible since version 1.3.1:

<load>
 <arrivalphase phase="1" duration="10" unit="minute">
 <users interarrival="2" unit="second"></users>
 </arrivalphase>
 <user session="http-example" start_time="185" unit="second"></user>
 <user session="http-example" start_time="10" unit="minute"></user>
 <user session="foo" start_time="11" unit="minute"></user>
</load>
<sessions>
 <session name="http-example" probability="0" type="ts_http">
 <request> <http url="/" method="GET"></http> </request>
 </session>
 <session name="foobar" probability="0" type="ts_http">
 <request> <http url="/bar" method="GET"></http> </request>
 </session>
 <session name="foo" probability="100" type="ts_http">
 <request> <http url="/" method="GET"></http> </request>
 </session>
</sessions>

In this example, we have two sessions, one has a “0” probability (and
therefore will not be used in the first phase), and the other
100%. We define 3 users starting respectively 3mn and 5 seconds
after the beginning of the test (using the http-example
session), one starting after 10 minutes, and a last one starting after
11 minutes (using the foo session this time)

New in version 1.5.1.

If you want to start several sessions at once, and if the name of
these sessions starts with the same prefix, you can use a
wildcard. Given the previous sessions, this example will start two
users (one with foo session, and one with foobar session) at
starttime +10s.

<user session="foo*" start_time="10" unit="second"/>

6.4.3. Duration of the load test

By default, tsung will end when all started users have finished their
session. So it can be much longer than the duration of
arrivalphases. If you want to stop Tsung after a given duration
(even if phases are not finished or if some sessions are still actives),
you can do this with the duration attribute in load (feature added in 1.3.2):

<load duration="1" unit="hour">
 <arrivalphase phase="1" duration="10" unit="minute">
 <users interarrival="2" unit="second"></users>
 </arrivalphase>
</load>

Currently, the maximum value for duration is a little bit less than 50
days. unit can be second, minute or hour.

6.5. Setting options

6.5.1. Thinktimes, SSL, Buffers

Default values can be set-up globally: thinktime between requests
in the scenario, SSL cipher algorithms (use ssl:cipher_suites(openssl). to get a
list of available ciphers), TCP/UDP buffer sizes (the default value is 32KB).
These values overrides those set in session configuration tags if override is true.

<option name="thinktime" value="3" random="false" override="true"/>
<option name="ssl_ciphers"
 value="EXP1024-RC4-SHA,EDH-RSA-DES-CBC3-SHA"/>
<option name="tcp_snd_buffer" value="16384"></option>
<option name="tcp_rcv_buffer" value="16384"></option>
<option name="udp_snd_buffer" value="16384"></option>
<option name="udp_rcv_buffer" value="16384"></option>

New in version 1.6.0.

You can disable the SSL session cache (it is enabled by default)

<option name="ssl_reuse_sessions" value="false"/>

You can specify which SSL protocol you want use. Use ssl:versions(). to get
a list of available ssl protocols.

<option name="ssl_versions" value="'tlsv1.2'"/>

You can also use the command line option -L <value> to change the
session lifetime in the cache (10mn by default); value must be in seconds.

You can also change the way Tsung starts remote beams. By default,
Tsung will start at most 20 ssh process per core of the controller. If
you manage hundreds of clients, you may want to raise this value with
max_ssh_startup_per_core (or decrease it if you wish)

<option name="max_ssh_startup_per_core" value="100"/>

6.5.2. Timeout for TCP connections

New in version 1.6.0.

You can specify a timeout in milliseconds for establishing a TCP connection. The default is infinity.

<option name="connect_timeout" value="5000" />

You can also change the timeout on a per-session basis using set_option.

<set_option name="connect_timeout" value="1000" />

You can also enable the TCP REUSEADDR option globally:

<option name="tcp_reuseaddr" value="true" />

6.5.3. IP transparent

New in version 1.7.0.

This option is used to set the IP_TRANSPARENT option on the TCP socket

<option name="ip_transparent" value="true" />

This can be useful to use when IPs are not configured on the client host (see also iprange)

6.5.4. Retry Attempts and Timeouts

New in version 1.6.0.

You can specify the amount of retry attempts made by Tsung. The default is 3.

<option name="max_retries" value="5" />

To disable retries entirely, set the value to 0.

In addition, the option retry_timeout (in milliseconds; defaults to 10) is used to implement a
simple back-off algorithm (retry * retry_timeout).

<set_option name="retry_timeout" value="1000" />

6.5.5. Timeout for acknowledgments of messages

This is used to set the idle timeout(used for ‘parse’ and ‘local’ ack) and
global ack timeout(used for ‘global’ ack). By default, idle timeout will be
10min(600000) and global ack timeout will be infinity. This value
can be changed like this:

<option name="idle_timeout" value="300000"></option>
<option name="global_ack_timeout" value="6000000"></option>

6.5.6. Hibernate

New in version 1.3.1.

The option hibernate is used to reduced memory consumption of
simulated users during thinktimes. By default, hibernation will be
activated for thinktimes higher than 10sec. This value can be changed
like this:

<option name="hibernate" value="5"></option>

To disable hibernation, you must set the value to infinity.

6.5.7. Rate_limit

New in version 1.4.0.

rate_limit. This will limit the bandwidth of each client
(using a token bucket algorithm). The value is in KBytes per
second. You can also specify a maximum burst value
(eg. max='2048'). By default the burst size is the same as
the rate (1024KB in the following example). Currently, only incoming
traffic is rate limited.

<option name="rate_limit" value="1024"></option>

6.5.8. Ports_range

If you need to open more than 30000 simultaneous connections on a
client machine, you will be limited by the number of TCP client ports,
even if you use several IPs (this is true at least on Linux). To
bypass this limit, Tsung must not delegate the selection of client
ports and together with using several IP for each client,
you have to defined a range for available clients ports, for ex:

<option name="ports_range" min="1025" max="65535"/>

6.5.9. Setting the seed for random numbers

If you want to use a fixed seed for the random generator, you can use
the seed option, like this (by default, Tsung will use the
current time to set the seed, therefore random numbers should be
different for every test).

<option name="seed" value="42"/>

6.5.10. Path for BOSH

You can use the following config option for setting the path to BOSH
request:

<option name="bosh_path" value="/http-bind/"/>

6.5.11. Websocket options

When you use Websocket as a server type, you can set the following options
for Websocket:

<option name="websocket_path" value="/chat"/>

<!-- send websocket data with text frame, default binary-->
<option name="websocket_frame" value="text"/>
<option name="websocket_subprotocols" value="chat, superchat"/>

Use websocket_path for setting the path of the websocket request; use
websocket_frame for setting the frame type(option type: binary and text,
and binary as default) of the sending websocket data. Use websocket_subprotocols for setting the Sec-WebSocket-Protocol header.

6.5.12. XMPP/Jabber options

Default values for specific protocols can be defined. Here is an
example of option values for Jabber/XMPP:

<option type="ts_jabber" name="global_number" value="5" />
<option type="ts_jabber" name="userid_max" value="100" />
<option type="ts_jabber" name="domain" value="jabber.org" />
<option type="ts_jabber" name="username" value="myuser" />
<option type="ts_jabber" name="passwd" value="mypasswd" />
<option type="ts_jabber" name="muc_service" value="conference.localhost"/>

Using these values, users will be myuserXXX where XXX is an integer in
the interval [1:userid_max] and passwd mypasswdXXX

If not set in the configuration file, the values will be set to:

	global_number = 100

	userid_max = 10000

	domain = erlang-projects.org

	username = tsunguser

	passwd = sesame

Other options are available if you prefer to use a CSV file for
username/password, see Reading usernames and password from a CSV file.

You can also set the muc_service here (see previous example).

6.5.13. HTTP options

For HTTP, you can set the UserAgent values
(available since Tsung 1.1.0), using a probability for each
value (the sum of all probabilities must be equal to 100)

<option type="ts_http" name="user_agent">
 <user_agent probability="80">
 Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.8) Gecko/20050513 Galeon/1.3.21
 </user_agent>
 <user_agent probability="20">
 Mozilla/5.0 (Windows; U; Windows NT 5.2; fr-FR; rv:1.7.8) Gecko/20050511 Firefox/1.0.4
 </user_agent>
</option>

6.5.14. AMQP options

You can set the AMQP heartbeat timeout; for example to set it to 30s
(default is 600s), add:

<option type="ts_amqp" name="heartbeat" value="30" />

6.6. Sessions

Sessions define the content of the scenario itself. They describe
the requests to execute.

Each session has a given probability. This is used to decide which
session a new user will execute. The sum of all session’s
probabilities must be 100.

Since Tsung 1.5.0, you can use weights instead of
probabilities. In the following example, there will be twice as many
sessions of type s1 than s2.

<session name="s1" weight="2" type="ts_http">
<session name="s2" weight="1" type="ts_http">

A transaction is just a way to have customized statistics. Say if you
want to know the response time of the login page of your website, you
just have to put all the requests of this page (HTML + embedded
pictures) within a transaction. In the example above, the transaction
called index_request will gives you in the
statistics/reports the mean response time to get
index.en.html + header.gif. Be warn that If you have a
thinktime inside the transaction, the thinktime will be part of the
response time.

6.6.1. Thinktimes

You can set static or random thinktimes to separate requests. By
default, a random thinktime will be a exponential distribution with
mean equals to value.

<thinktime value="20" random="true"></thinktime>

In this case, the thinktime will be an exponential distribution with a
mean equals to 20 seconds.

Since version 1.3.0, you can also use a range
[min:max] instead of a mean for random thinktimes (the
distribution will be uniform in the interval):

<thinktime min="2" max="10" random="true"></thinktime>

Since version 1.4.0, you can use a dynamic variable to set
the thinktime value:

<thinktime value="%%_rndthink%%" random="true"></thinktime>

You can also synchronize all users using the wait_global value:

<thinktime value='wait_global'>

which means: wait for all (N) users to be connected and waiting for
the global lock (the value can be set using the option <option
name="global_number" value ="XXX"/> and by setting maxnumber=N in
<arrivalphase>).

Since version 1.6.0, you can wait for a ‘bidi’ ack. If your protocol is bidirectional (e.g. xmpp, websocket, ...), you can wait until the server sends some data, and the code that handle this data exits the think state.

<thinktime value="wait_bidi"></thinktime> -

6.6.2. HTTP

This example shows several features of the HTTP protocol support in
Tsung: GET and POST request, basic authentication, transaction for
statistics definition, conditional request (IF MODIFIED SINCE):

<sessions>
 <session name="http-example" probability="70" type="ts_http">

 <request> <http url="/" method="GET" version="1.1">
 </http> </request>
 <request> <http url="/images/logo.gif"
 method="GET" version="1.1"
 if_modified_since="Fri, 14 Nov 2003 02:43:31 GMT">
 </http></request>

 <thinktime value="20" random="true"></thinktime>

 <transaction name="index_request">
 <request><http url="/index.en.html"
 method="GET" version="1.1" >
 </http> </request>
 <request><http url="/images/header.gif"
 method="GET" version="1.1">
 </http> </request>
 </transaction>

 <thinktime value="60" random="true"></thinktime>
 <request>
 <http url="/" method="POST" version="1.1"
 contents="bla=blu">
 </http> </request>
 <request>
 <http url="/bla" method="POST" version="1.1"
 contents="bla=blu&name=glop">
 <www_authenticate userid="Aladdin"
 passwd="open sesame"/></http>
 </request>
 </session>

 <session name="backoffice" probability="30" >
 <!-- -->
 </session>
</sessions>

If you use an absolute URL, the server used in the URL will override
the one specified in the <server> section. The following relative
requests in the session will also use this new server value (until a
new absolute URL is set).

New in 1.2.2: You can add any HTTP header now, as in:

<request>
 <http url="/bla" method="POST" contents="bla=blu&name=glop">
 <www_authenticate userid="Aladdin" passwd="open sesame"/>
 <http_header name="Cache-Control" value="no-cache"/>
 <http_header name="Referer" value="http://www.w3.org/"/>
 </http>
</request>

New in 1.3.0: You can also read the content of a POST or PUT
request from an external file:

<http url="mypage" method="POST" contents_from_file="/tmp/myfile" />

Since 1.3.1, you can also manually set a cookie, though the
cookie is not persistent: you must add it in every <requests>:

<http url="/">
 <add_cookie key="foo" value="bar"/>
 <add_cookie key="id" value="123"/>
</http>

6.6.2.1. Authentication

Until Tsung 1.5.0, only Basic authentication was implemented. You can
now use Digest Authentication and OAuth 1.0.

To use Digest authentication:

<!-- 1. First request return 401. We use dynvars to fetch nonce and realm -->
<request>
 <dyn_variable name="nonce" header="www-authenticate/nonce"/>
 <dyn_variable name="realm" header="www-authenticate/realm"/>
 <http url="/digest" method="GET" version="1.1"/>
</request>

 <!--
 2. This request will be authenticated. Type="digest" is important.
 We use the nonce and realm values returned from the previous
 If the webserver returns the nextnonce we set it to the nonce dynvar
 for use with the next request.
 Else it stays set to the old value
 -->
 <request subst="true">
 <dyn_variable name="nonce" header="authentication-info/nextnonce"/>
 <http url="/digest" method="GET" version="1.1">
 <www_authenticate userid="user" passwd="passwd" type="digest" realm="%%_realm%%" nonce="%%_nonce%%"/>
 </http>
 </request>

To use OAuth authentication:

<!-- Getting a Request Token -->

 <request>
 <dyn_variable name="access_token" re="oauth_token=([^&]*)"/>
 <dyn_variable name="access_token_secret" re="oauth_token_secret=([^&]*)" />
 <http url="/oauth/example/request_token.php" method="POST" version="1.1" contents="empty">
 <oauth consumer_key="key" consumer_secret="secret" method="HMAC-SHA1"/>
 </http>
 </request>

 <!-- Getting an Access Token -->

 <request subst='true'>
 <dyn_variable name="access_token" re="oauth_token=([^&]*)"/>
 <dyn_variable name="access_token_secret" re="oauth_token_secret=([^&]*)"/>
 <http url="/oauth/example/access_token.php" method="POST" version="1.1" contents="empty">
 <oauth consumer_key="key" consumer_secret="secret" method="HMAC-SHA1" access_token="%%_access_token%%" access_token_secret="%%_access_token_secret%%"/>
 </http>
 </request>

 <!-- Making Authenticated Calls -->

 <request subst="true">
 <http url="/oauth/example/echo_api.php" method="GET" version="1.1">
 <oauth consumer_key="key" consumer_secret="secret" access_token="%%_access_token%%" access_token_secret="%%_access_token_secret%%"/>
 </http>
 </request>

6.6.3. Jabber/XMPP

Here is an example of a session definition for the Jabber/XMPP protocol:

<sessions>
 <session probability="70" name="jabber-example" type="ts_jabber">

 <request> <jabber type="connect" ack="local" /> </request>

 <thinktime value="2"></thinktime>

 <transaction name="authenticate">
 <request> <jabber type="auth_get" ack="local"></jabber> </request>
 <request> <jabber type="auth_set_plain" ack="local"></jabber> </request>
 </transaction>

 <request> <jabber type="presence:initial" ack="no_ack"/> </request>

 <thinktime value="30"></thinktime>

 <transaction name="online">
 <request> <jabber type="chat" ack="no_ack" size="16" destination="online"/></request>
 </transaction>

 <thinktime value="30"></thinktime>

 <transaction name="offline">
 <request> <jabber type="chat" ack="no_ack" size="56" destination="offline"/><request>
 </transaction>

 <thinktime value="30"></thinktime>

 <transaction name="close">
 <request> <jabber type="close" ack="local"> </jabber></request>
 </transaction>
 </session>
</sessions>

6.6.3.1. Message stamping

It is possible to stamp chat message by setting stamped attribute of
<jabber> element inside request to true. The stamp will include current
timestamp and ID of the sender node. If the recipient will recognize the node ID,
it will compare the timestamp inside message with the current one. The difference
will be reported as xmpp_msg_latency metric (in milliseconds).
The aim of node ID comparison is to avoid slight inconsistencies
of timestamps on different Tsung nodes.

Only a fraction of requests will hit the same node they originated from,
but with request rate high enough this fraction should be sufficient.

stamped is allowed only with size attribute. data will cause
stamped to be ignored. There is a minimal length of the stamp,
roughly 30 bytes. When size is greater than stamp length, random
padding will be added to the stamp. If the stamp length is higher than
size, then only stamp will be used as messagecontent, effectively
exceeding specified length.

6.6.3.2. StartTLS

To secure a stream with STARTTLS, use:

<jabber type="starttls" ack="bidi_ack" />

Client certificate is implemented since 1.5.1, for example, you can
use dynamic variables like this:

<jabber type="starttls" ack="bidi_ack"
 cacertfile="%%_cacert%%"
 certfile="%%_certfile%%"
 keyfile="%%_keyfile%%" />

6.6.3.3. Roster

What you can do with rosters using Tsung:

You can

	Add a new contact to their roster
- The new contact is added to the Tsung Group group, and their name matches their JID

	Send a subscribe presence notification to the new contact’s JID
- This results in a pending subscription

	Rename a roster contact
This changes the previously added contact’s name from the default JID, to Tsung Testuser

	Delete the previously added contact.

Note that when you add a new contact, the contact JID is stored and
used for the operations that follow. It is recommended that for each
session which is configured to perform these operations, only do so
once. In other words, you would NOT want to ADD more than one new
contact per session. If you want to alter the rate that these roster
functions are used during your test, it is best to use the session
‘probability’ factor to shape this.

The nice thing about this is that when you test run is complete, your
roster tables should look the same as before you started the test. So,
if you set it up properly, you can have pre-loaded roster entries
before the test, and then use these methods to dynamically add,
modify, and remove roster entries during the test as well.

Example roster modification setup:

<session probability="100" name="jabber-rostermod" type="ts_jabber">

 <!-- connect, authenticate, roster 'get', etc... -->

 <transaction name="rosteradd">
 <request>
 <jabber type="iq:roster:add" ack="no_ack" destination="online"></jabber>
 </request>
 <request>
 <jabber type="presence:subscribe" ack="no_ack"/>
 </request>
 </transaction>

 <!-- ... -->

 <transaction name="rosterrename">
 <request> <jabber type="iq:roster:rename" ack="no_ack"></jabber> </request>
 </transaction>

 <!-- ... -->

 <transaction name="rosterdelete">
 <request> <jabber type="iq:roster:remove" ack="no_ack"></jabber> </request>
 </transaction>

 <!-- remainder of session... -->

 </session>

See also Bidirectional Presence for automatic handling of subscribing requests.

6.6.3.4. SASL Plain

SASL Plain authentication example:

<session probability="100" name="sasl" type="ts_jabber">

 <request> <jabber type="connect" ack="local"></jabber> </request>

 <thinktime value="10"></thinktime>

 <transaction name="authenticate">
 <request>
 <jabber type="auth_sasl" ack="local"></jabber></request>

 <request>
 <jabber type="connect" ack="local"></jabber> </request>

 <request>
 <jabber type="auth_sasl_bind" ack="local" ></jabber></request>
 <request>
 <jabber type="auth_sasl_session" ack="local" ></jabber></request>

 </transaction>

6.6.3.5. SASL Anonymous

SASL Anonymous authentication example:

<session probability="100" name="sasl" type="ts_jabber">

 <request> <jabber type="connect" ack="local"></jabber> </request>

 <thinktime value="10"></thinktime>

 <transaction name="authenticate">
 <request>
 <jabber type="auth_sasl_anonymous" ack="local"></jabber></request>

 <request>
 <jabber type="connect" ack="local"></jabber> </request>

 <request>
 <jabber type="auth_sasl_bind" ack="local" ></jabber></request>
 <request>
 <jabber type="auth_sasl_session" ack="local" ></jabber></request>

 </transaction>

6.6.3.6. Presence

	type can be either presence:broadcast or presence:directed.

	show value must be either away, chat, dnd, or xa.

	status value can be any text.

For more info, see section 2.2 of RFC 3921 [https://tools.ietf.org/html/rfc3921.html].

If you omit the show or status attributes, they default to chat and Available respectively.

Example of broadcast presence (broadcast to members of your roster):

<request>
 <jabber type="presence:broadcast" show="away" status="Be right back..." ack="no_ack"/>
</request>

<thinktime value="5"></thinktime>

<request>
 <jabber type="presence:broadcast" show="chat" status="Available
 to chat" ack="no_ack"/>
</request>

<thinktime value="5"></thinktime>

<request>
 <jabber type="presence:broadcast" show="dnd" status="Don't bother me!" ack="no_ack"/>
</request>
<thinktime value="5"></thinktime>

<request>
 <jabber type="presence:broadcast" show="xa" status="I may never come back..."
 ack="no_ack"/>
</request>
<thinktime value="5"></thinktime>

<request> <jabber type="presence:broadcast" ack="no_ack"/> </request>
<thinktime value="5"></thinktime>

Example of directed presence (sent to random online users):

<request>
 <jabber type="presence:directed" show="away" status="Be right back..." ack="no_ack"/>
</request>
<thinktime value="5"></thinktime>

<request>
 <jabber type="presence:directed" show="chat" status="Available to chat" ack="no_ack"/>
</request>
<thinktime value="5"></thinktime>

<request>
 <jabber type="presence:directed" show="dnd" status="Don't bother me!" ack="no_ack"/>
</request>
<thinktime value="5"></thinktime>

<request>
 <jabber type="presence:directed" show="xa" status="I may never come back..."
 ack="no_ack"/>
 </request>
<thinktime value="5"></thinktime>

<request>
 <jabber type="presence:directed" ack="no_ack"/>
</request>
<thinktime value="5"></thinktime>

6.6.3.7. MUC

Tsung supports three MUC operations:

	Join a room (attribute type='muc:join')

	Send a message to a room (attribute type='muc:chat')

	Change nickname (attribute type='muc:nick')

	Exit a room (attribute type='muc:exit')

Here’s an example:

<!-- First, choose an random room and random nickname: -->
<setdynvars sourcetype="random_number" start="1" end="100">
 <var name="room"/>
</setdynvars>
<setdynvars sourcetype="random_string" length="10">
 <var name="nick1"/>
</setdynvars>

<request subst="true">
 <jabber type='muc:join' ack="local" room="room%%_room%%" nick="%%_nick1%%"/>
</request>

<!-- use a for loop to send several messages to the room -->
<for from="1" to="6" var="i">
 <thinktime value="30"/>
 <request subst="true">
 <jabber type="muc:chat" ack="no_ack" size="16" room="room%%_room%%"/>
 </request>
</for>

<!-- change nickname-->
<thinktime value="2"/>
<setdynvars sourcetype="random_string" length="10">
 <var name="nick2"/>
</setdynvars>

<request subst="true">
 <jabber type="muc:nick" room="room%%_room%%" nick="%%_nick2%%"
 ack="no_ack"/>
</request>

MUC support is available since version 1.3.1.

6.6.3.8. PubSub

Experimental support for PubSub is available in version 1.3.1

You can read the following entry: https://support.process-one.net/browse/TSUN-115

6.6.3.9. VHost

VHost support is available since version 1.3.2

Tsung is able to bench multiple vhost instances by choosing a
vhost XMPP name from a list at connection time in the scenario.

The vhost list is read from a file:

<options>
...
<option name="file_server" value="domains.csv" id="vhostfileId"></option>
...
<option type="ts_jabber" name="vhost_file" value="vhostfileId"></option>
...
</options>

When each client starts a session, it chooses randomly a domain (each domain has the
same probability).

6.6.3.10. Reading usernames and password from a CSV file

Since version 1.4.0, you can now use a CSV file to store the usernames
and password.

Configure the CSV file:

<options>
 <option name="file_server" id='userdb' value="/home/foo/.tsung/users.csv"/>
</options>

And then you have to defined two variables of type file,
and the first jabber request (connect) must include a
xmpp_authenticate tag:

<session probability="100" name="jabber-example" type="ts_jabber">

 <setdynvars sourcetype="file" fileid="userdb" delimiter=";" order="iter">
 <var name="username" />
 <var name="password" />
 </setdynvars>

 <request subst='true'>
 <jabber type="connect" ack="no_ack">
 <xmpp_authenticate username="%%_username%%" passwd="%%_password%%"/>
 </jabber>
 </request>

 <thinktime value="2"></thinktime>

 <transaction name="authenticate">

 <request>
 <jabber type="auth_get" ack="local"> </jabber>
 </request>
 <request>
 <jabber type="auth_set_plain" ack="local"></jabber>
 </request>

 </transaction>
 ...
</session>

Moreover (since 1.5.0), when using chat messages to random or offline users, you
should disable the default users (not from CSV) by setting
userid_max to 0 and by setting the fileid for
offline and random users (also used for pubsub):

<options>
 <option type="ts_jabber" name="userid_max" value="0" />
 <option type="ts_jabber" name="random_from_fileid" value='userdb'/>
 <option type="ts_jabber" name="offline_from_fileid" value='userdb'/>
 <option type="ts_jabber" name="fileid_delimiter" value=";"/>
</options>

The username (resp. passwd) should be the first (resp. second) entry in the each CSV line (the
delimiter is by default ";" and can be overriden).

6.6.3.11. raw XML

You can send raw XML data to the server using the raw type:

<jabber type="raw" ack="no_ack" data="<stream>foo</stream>"></jabber>

Beware: you must encode XML characters like < , >, &, etc.

6.6.3.12. resource

By default, the XMPP resource is set to tsung. Since
version 1.5.0, you can override this (in all auth_* and
register requests) using the resource attribute.

6.6.4. PostgreSQL

For PostgreSQL, 4 types of requests are available:

	connect (to a given database with a given username)

	authenticate (with password or not)

	sql (basic protocol)

	close

In addition, the following parts of the extended protocol is supported:

	copy, copydone and copyfail

	parse, bind, execute, describe

	sync, flush

This example shows most of the features of a PostgreSQL session:

 <session probability="100" name="pgsql-example" type="ts_pgsql">
 <transaction name="connection">
 <request>
 <pgsql type="connect" database="bench" username="bench" />
 </request>
 </transaction>

 <request><pgsql type="authenticate" password="sesame"/></request>

 <thinktime value="12"/>

 <request><pgsql type="sql">SELECT * from accounts;</pgsql></request>

 <thinktime value="20"/>

 <request><pgsql type="sql">SELECT * from users;</pgsql></request>

 <request><pgsql type='sql'><![CDATA[SELECT n.nspname as "Schema",
 c.relname as "Name",
 CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view' WHEN 'i'
 THEN 'index' WHEN 'S' THEN 'sequence' WHEN 's' THEN '%_toto_% END as "Type",
 u.usename as "Owner"
FROM pg_catalog.pg_class c
 LEFT JOIN pg_catalog.pg_user u ON u.usesysid = c.relowner
 LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace
WHERE c.relkind IN ('r','v','S','')
 AND n.nspname NOT IN ('pg_catalog', 'pg_toast')
 AND pg_catalog.pg_table_is_visible(c.oid)
ORDER BY 1,2;]]></pgsql></request>

 <request><pgsql type="close"></pgsql></request>

 </session>

Example with the extended protocol:

<request><pgsql type='parse' name_prepared='P0_7'><![CDATA[BEGIN;]]></pgsql></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='parse' name_prepared='P0_8'><![CDATA[UPDATE pgbench_accounts
 SET abalance = abalance + $1 WHERE aid = $2;]]></pgsql></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='parse' name_prepared='P0_9'><![CDATA[SELECT
 abalance FROM pgbench_accounts
 WHERE aid = $1;]]></pgsql></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='parse' name_prepared='P0_10'><![CDATA[UPDATE pgbench_tellers
 SET tbalance = tbalance + $1 WHERE tid = $2;]]></pgsql></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='parse' name_prepared='P0_11'><![CDATA[UPDATE pgbench_branches
 SET bbalance = bbalance + $1 WHERE bid = $2;]]></pgsql></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='parse' name_prepared='P0_12'><![CDATA[INSERT
 INTO pgbench_history (tid, bid, aid, delta, mtime)
 VALUES ($1, $2, $3, $4, CURRENT_TIMESTAMP);]]></pgsql></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='parse' name_prepared='P0_13'><![CDATA[END;]]></pgsql></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='bind' name_prepared='P0_7' formats='none' formats_results='text' /></request>
<request><pgsql type='describe' name_portal=''/></request>
<request><pgsql type='execute'/></request>
<request><pgsql type='sync'/></request>
<request><pgsql type='bind' name_portal='' name_prepared='P0_8'
 formats='none' formats_results='text'
 parameters='2924,37801'/></request>

6.6.5. MySQL

For MySQL, 4 types of requests are available (same as PostgreSQL):

	connect (to a given database with a given username)

	authenticate (with password or not)

	sql

	close

This example shows most of the features of a MySQL session:

<session probability="100" name="mysql-example" type="ts_mysql">
<request>
 <mysql type="connect" />
</request>
<request>
 <mysql type="authenticate" database="test" username="test" password="test" />
</request>
<request>
 <mysql type="sql">SHOW TABLES</mysql>
</request>
<request>
 <mysql type="sql">SELECT * FROM mytable</mysql>
</request>
<request>
 <mysql type="close" />
</request>
</session>

6.6.6. Websocket

For Websocket, 3 types of requests are available:

	connect (to a given path)

	message (send message to server, add a attribute ‘ack’ to specify whether
Tsung should wait for a response)

	close

Example with Websocket as a session type:

<session probability="100" name="websocket-example" type="ts_websocket">
 <request subst="true">
 <websocket type="connect" path="/path/to/ws"></websocket>
 </request>
 <request>
 <dyn_variable name="uid" jsonpath="uid"/>
 <!-- send data with text frame, default binary-->
 <websocket type="message" frame="text">{"user":"user", "password":"password"}</websocket>
 </request>

 <request subst="true">
 <match do="log" when="nomatch">ok</match>
 <websocket type="message">{"uid":"%%_uid%%", "data":"data"}</websocket>
 </request>

 <request>
 <websocket type="message" ack="no_ack">{"key":"value"}</websocket>
 </request>

 <request>
 <websocket type="close"></websocket>
 </request>
</session>

You can do substitution on attribute ‘path’ and message content, match a
response or define dynamic variables based on the response message.

You can also set the subprotocols in a connect message:

<websocket type="connect" path="/path/to/ws" subprotocols="chat"></websocket>

If you use change_type to start a websocket, don’t forget to set
bidi="true", like this:

<change_type new_type="ts_websocket" host="127.0.0.1" port="8080" server_type="tcp" restore="true" store="true" bidi="true"/>i

When connecting to a websocket server you can set the origin, which can be
checked by a websocket as a security measure, see
https://tools.ietf.org/html/rfc6455#section-10.2 for more details.
If not set this defaults to the host value.

<websocket type="connect" origin="https://example.com"></websocket>

6.6.7. AMQP

For AMQP, it supports publish and consume messages on multiple channel,
Available request types:

	connection.open (to a given vhost)

	connection.close

	channel.open (with specified and valid channel id)

	channel.close (with specified and valid channel id)

	confirm.select (on specified and already opened channel)

	basic.qos (on specified and already opened channel, only supports
attribute ‘prefetch_count’)

	basic.publish (with channel id, exchange name, routing_key and the payload

	basic.consume (with channel id, queue name)

	waitForConfirms (with timeout for confirmations from the server)

	waitForMessages (with timeout for messages delivered to the client)

Example with AMQP as a session type:

<session probability="100" name="amqp-example" type="ts_amqp" bidi="true">
 <request>
 <amqp type="connection.open" vhost="/"></amqp>
 </request>

 <!-- open channel, channel id is from 1 to 10 -->
 <for from="1" to="10" incr="1" var="loops">
 <request>
 <amqp type="channel.open"></amqp>
 </request>
 </for>

 <!-- ignore this request if you don't need publisher confirm -->
 <for from="1" to="10" incr="1" var="loops">
 <request subst="true">
 <amqp type="confirm.select" channel="%%_loops%%"></amqp>
 </request>
 </for>

 <for from="1" to="10" incr="1" var="loops">
 <for from="1" to="100" incr="1" var="counter">
 <transaction name="publish">
 <!-- specify payload_size to have tsung generate a payload for you -->
 <request subst="true">
 <amqp type="basic.publish" channel="%%_loops%%" exchange="test_exchange"
 routing_key="test_queue" persistent="true" payload_size="100"></amqp>
 </request>
 <!-- substitutions are supported on the payload. Payload will override payload_size. -->
 <request subst="true">
 <amqp type="basic.publish" channel="%%_loops%%" exchange="test_exchange"
 routing_key="test_queue" persistent="true" payload="Test Payload"></amqp>
 </request>
 </transaction>
 </for>

 <!-- if publish with confirm, add a waitForConfirms request as you need: timeout=1s -->
 <request>
 <amqp type="waitForConfirms" timeout="1"></amqp>
 </request>
 </for>

 <for from="1" to="10" incr="1" var="loops">
 <request subst="true">
 <amqp type="basic.consume" channel="%%_loops%%" queue="test_queue" ack="true"></amqp>
 </request>
 </for>

 <!-- wait to receive messages from the server: timeout=180s -->
 <request>
 <amqp type="waitForMessages" timeout="180"></amqp>
 </request>

 <for from="1" to="10" incr="1" var="loops">
 <request subst="true">
 <amqp type="channel.close" channel="%%_loops%%"></amqp>
 </request>
 </for>

 <request>
 <amqp type="connection.close"></amqp>
 </request>
</session>

6.6.8. MQTT

It supports publish messages, subscribe and unsubscribe topics,
Available request types:

	connect (with options like clean_start, will_topic, username, password, etc.)

	disconnect

	publish (with topic name, qos level and retain flag)

	subscribe (with topic name and qos level)

	unsubscribe (with topic name)

	waitForMessages (with timeout for messages published from server to the
client)

Example with MQTT as a session type:

<session name="mqtt-example" probability="100" type="ts_mqtt">
 <request>
 <mqtt type="connect" clean_start="true" keepalive="10" will_topic="will_topic" will_qos="0" will_msg="will_msg" will_retain="false"></mqtt>
 </request>

 <for from="1" to="10" incr="1" var="loops">
 <request subst="true">
 <mqtt type="publish" topic="test_topic" qos="1" retained="true">test_message</mqtt>
 </request>
 </for>

 <request subst="true">
 <mqtt type="subscribe" topic="test_topic" qos="1"></mqtt>
 </request>

 <request>
 <!-- wait for 60s -->
 <mqtt type="waitForMessages" timeout="60"></mqtt>
 </request>

 <request subst="true">
 <mqtt type="unsubscribe" topic="test_topic"></mqtt>
 </request>

 <request>
 <mqtt type="disconnect"></mqtt>
 </request>
</session>

6.6.9. LDAP

6.6.9.1. Authentication

The recommended mechanism used to authenticate users against a LDAP
repository requires two steps to follow. Given an username and
password, we:

	Search the user in the repository tree, using the username (so users can reside in different subtrees of the organization)

	Try to bind as the user, with the distinguished name found in the first step and the user’s password

If the bind is successful, the user is authenticated (this is the
scheme used, among others, by the LDAP authentication module for
Apache http://httpd.apache.org/docs/2.0/mod/mod_auth_ldap.html)

6.6.9.2. LDAP Setup

For this example we are going to use a simple repository with the following hierarchy:

[image: _images/ldap-hierarchy.png]
LDAP hierarchy

The repository has users in two organizational units

	users (with four members)

	users2 (with tree members)

For simplicity we set the password of each user to be the same as its common name (cn).
Tsung Setup
We will use a CSV file as input, containing the user:password pairs
for our test. So we start by writing it, in this case we name the file users.csv:

user1;user1
user2;user2
user3;user3
user4;user4
jane;jane
mary;mary
paul;pablo
paul;paul

The pair paul:pablo should fail to authenticate, we will note that in the Tsung report.
Then, in our Tsung scenario, we let Tsung know about this file:

<options>
 <option name="file_server" id="users" value="users.csv"/>
</options>
<!-- We use two dynamic variables to hold the username and password -->
<setdynvars sourcetype="file" fileid="users" delimiter=";" order="iter">
 <var name="username" />
 <var name="password" />
</setdynvars>

To start the authentication process we instruct Tsung to perform a search, to find the distinguished name of the user we are trying to authenticate

<ldap type="search" base="dc=pablo-desktop" filter="(cn=%%_username%%)"
 result_var="search_result" scope="wholeSubtree"></ldap>

As we need to access the search result, we specify it using the result_var attribute. This attribute tells Tsung in which dynamic variable we want to store the result (if the result_var attribute isn’t set, Tsung doesn’t store the search result in any place).
Finally, we try to bind as that user.

<request subst="true">
 <ldap type="bind" user="%%ldap_auth:user_dn%%"
 password="%%_password%%"></ldap>
</request>

The only thing that remains to do is to implement the ldap_auth:user_dn function, that extract the distinguished name from the search result.

-module(ldap_auth).
-export([user_dn/1]).
user_dn({_Pid,DynVars}) ->
 [SearchResultEntry] = proplists:get_value(search_result,DynVars),
 {_,DN,_} = SearchResultEntry,
 DN.

We aren’t covering errors here. supposing that there is always one (and only one) user found, that we extract from the search_result variable (as defined in the previous search operation).
Each entry in the result set is a SearchResultEntry record. The record definition can be found in <TSUNG_DIR>/include/ELDAPv3.hrl.

As we only need to access the distinguished name of the object, we index into the result tuple directly. But if you need to access other attributes you probably will want to include the appropriate .hrl and use the record syntax instead. One of the eight user:password pairs in our users file was wrong, so we expect 1/8 of the authentication attempts to fail.

Indeed, after running the scenario we can confirm this in the Tsung
report (see figure LDAP Results). The bind operation maintains two
counters: ldap_bind_ok and ldap_bind_error,
that counts successful and unsuccessful bind attempts.

[image: _images/ldap-results.png]
LDAP Results

6.6.9.3. Other examples

<session probability="100" name="ldap-example" type="ts_ldap">
 <request>
 <ldap type="bind" user="uid=foo" password="bar"/>
 </request>

 <request>
 <ldap type="search" base="dc=pablo-desktop" filter="(cn=user2)"
 scope="wholeSubtree"></ldap>
 </request>

 <!-- Add. Adds a new entry to the directory* -->
 <request subst="true">
 <ldap type="add" dn="%%_new_user_dn%%" >
 <attr type="objectClass">
 <value>organizationalPerson</value>
 <value>inetOrgPerson</value>
 <value>person</value>
 </attr>
 <attr type="cn"><value>%%_new_user_cn%%</value></attr>
 <attr type="sn"><value>fffs</value></attr>
 </ldap>
 </request>

 <!-- Modify. Modifies an existing entry; type=add|delete|modify-->
 <request subst="false">
 <ldap type="modify" dn="cn=u119843,dc=pablo-desktop" >
 <modification type="replace">
 <attr type="sn"><value>SomeSN</value></attr>
 <attr type="mail"><value>some@mail.com</value></attr>
 </modification>
 </ldap>
 </request>
</session>

6.6.10. Mixing session type

Since version 1.3.2, a new tag change_type can be
used in a session to change it’s type.

<request>
 <jabber type="chat" ack="no_ack" size="16"
 destination="offline"/>
</request>

<thinktime value="3"/>

<change_type new_type="ts_http" host="foo.bar" port="80"
server_type="tcp" store="true"/>

<request> <http url="http://foo.bar/"/> </request>
<request> <http url="/favicon"/> </request>

<change_type new_type="ts_jabber" host="localhost" port="5222"
server_type="tcp" restore="true"/>

<request> <jabber type="chat" ack="no_ack" size="16"
destination="previous"/> </request>

store="true" can be used to save the current state of the session (socket,
cookies for http, …) and restore="true" to reuse the previous state when
you switch back to the old protocol.

You can use bidi="true" to indicate that the new protocol is bidirectional or
bidi="false" for a non-bidirectional protocol (only available in version
1.5.1 and newer).

A dynamic variable set in the first part of the session will be
available after a <change_type>. There is currently one caveat: you have
to use a full URL in the first http request after a <change_type> (a
relative URL will fail).

6.6.11. Raw

The ts_raw plugin allows you to send traffic to any kind of
TCP/UDP server without any knowledge of the underlying protocol. You can set the data
by attribute data, or just set a data size by attribute
datasize (in this situation, Tsung send datasize bits of
zeros). data and datasize can be a dynamic values.

The only way to control the response from the server is to use the
ack attribute (also used by the jabber plugin):

	ack="local" as soon as a packet is received from the server, the
request is considered as completed. Hence if you use a local ack with a request
that does not require a response from the server, it
will wait forever (or until a timeout is reached).

	ack="no_ack" as soon as the request is sent, it is considered as completed (do
not wait for incoming data).

	ack="global" synchronized users. its main use is for waiting for all
users to connect before sending messages. To do that, set a request
with global ack (the value can be set using the option <option
name="global_number" value ="XXX"/> and by setting maxnumber=N in
<arrivalphase>).

<session probability="100" name="raw" type="ts_raw">
 <transaction name="open">
 <request> <raw data="HELLO" ack="local"></raw> </request>
 </transaction>

 <thinktime value="4"/>
 <request> <raw datasize="2048" ack="local"></raw> </request>

 <transaction name="bye">
 <request> <raw data="BYEBYE" ack="local"></raw> </request>
 </transaction>
</session>

6.7. Advanced Features

6.7.1. Dynamic substitutions

Dynamic substitution are mark-up placed in element of the scenario.
For HTTP, this mark-up can be placed in basic authentication (www_authenticate
tag: userid and passwd attributes), URL (to change GET parameter)
and POST content.

Those mark-up are of the form %%Module:Function%%.
Substitutions are executed on a request-by-request basis, only if the
request tag has the attribute subst="true".

When a substitution is requested, the substitution mark-up is replaced by
the result of the call to the Erlang function:
Module:Function({Pid, DynData}) where Pid is the Erlang process
id of the current virtual user and DynData the list of all Dynamic
variables (Warn: before version 1.1.0, the argument was just the
Pid!).

Here is an example of use of substitution in a Tsung scenario:

<session name="rec20040316-08:47" probability="100" type="ts_http">
 <request subst="true">
 <http url="/echo?symbol=%%symbol:new%%" method="GET"></http>
 </request>
</session>

For the http plugin, and since version 1.5.1, you can use the special value
subst='all_except_body' instead of 'true' to skip the substitutions in
the body part of the HTTP response.

Here is the Erlang code of the module used for dynamic substitution:

-module(symbol).
-export([new/1]).

new({Pid, DynData}) ->
 case random:uniform(3) of
 1 -> "IBM";
 2 -> "MSFT";
 3 -> "RHAT"
 end.

Use erlc to compiled the code, and put the resulting .beam
file in $PREFIX/lib/erlang/lib/tsung-X.X.X/ebin/ on all client
machines.

As you can see, writing scenario with dynamic substitution is
simple. It can be even simpler using dynamic variables (see later).

If you want to set unique id, you can use the built-in function
ts_user_server:get_unique_id.

<session name="rec20040316-08:47" probability="100" type="ts_http">
 <request subst="true">
 <http url="/echo?id=%%ts_user_server:get_unique_id%%" method="GET" />
 </request>
</session>

6.7.2. Reading external file

New in 1.0.3: A new module ts_file_server is available. You
can use it to read external files. For example, if you need to read user
names and passwd from a CSV file, you can do it with it (currently,
you can read only a single file).

You have to add this in the XML configuration file:

<option name="file_server" value="/tmp/userlist.csv"></option>

New in 1.2.2: You can read several files, using the id
attribute to identify each file:

<option name="file_server" value="/tmp/userlist.csv"></option>
<option name="file_server" id='random' value="/tmp/randomnumbers.csv"></option>

Now you can build your own function to use it, for example, create a
file called readcsv.erl:

-module(readcsv).
-export([user/1]).

user({Pid,DynVar})->
 {ok,Line} = ts_file_server:get_next_line(),
 [Username, Passwd] = string:tokens(Line,";"),
 "username=" ++ Username ++"&password=" ++ Passwd.

The output of the function will be a string username=USER&password=PASSWORD

Then compile it with erlc readcsv.erl and put
readcsv.beam in $prefix/lib/erlang/lib/tsung-VERSION/ebin directory (if the
file has an id set to random, change the call to ts_file_server:get_next_line(random)).

Then use something like this in your session:

<request subst="true">
 </http>
</request>

Two functions are available: ts_file_server:get_next_line
and ts_file_server:get_random_line. For the
get_next_line function, when the end of file is reached, the
first line of the file will be the next line.

New in 1.3.0: you no longer have to create an external
function to parse a simple csv file: you can use setdynvars
(see next section for detailed documentation):

<setdynvars sourcetype="file" fileid="userlist.csv" delimiter=";" order="iter">
 <var name="username" />
 <var name="user_password" />
</setdynvars>

This defines two dynamic variables username and
user_password filled with the next entry from the csv
file. Using the previous example, the request is now:

<request subst="true">
 <http url='/login.cgi' version='1.0'
 contents='username=%%_username%%&password=%%_user_password%%&op=login'
 content_type='application/x-www-form-urlencoded' method='POST'>
 </http>
</request>

Much simpler than the old method!

In case you have several arrival phases programmed and if you use file with
order="iter" the position in the file will not be reset between different
arrival phase. You will not be returned to the first line when changing phase.

<arrivalphase phase="1" duration="10" unit="minute">
 <users maxnumber="10" arrivalrate="100" unit="second" />
</arrivalphase>
<arrivalphase phase="2" duration="10" unit="minute">
 <users maxnumber="20" arrivalrate="100" unit="second"></users>
</arrivalphase>

In this example phase 1 will read about 10 lines and phase 2 will read the next
20 lines.

6.7.3. Dynamic variables

In some cases, you may want to use a value given by the server in a
response later in the session, and this value is dynamically
generated by the server for each user. For this, you can use
<dyn_variable> in the scenario

Let’s take an example with HTTP. You can easily grab a value in a HTML
form like:

<form action="go.cgi" method="POST">
 <hidden name="random_num" value="42"></form>
</form>

with:

<request>
 <dyn_variable name="random_num"></dyn_variable>
 <http url="/testtsung.html" method="GET" version="1.0"></http>
</request>

Now random_num will be set to 42 during the users session. Its
value will be replace in all mark-up of the form
%%_random_num%% if and only if the request tag has the
attribute subst="true", like:

<request subst="true">
 <http url="/go.cgi" version="1.0"
 contents="username=nic&random_num=%%_random_num%%&op=login"
 content_type="application/x-www-form-urlencoded" method="POST">
 </http>
</request>

6.7.3.1. Regexp

If the dynamic value is not a form variable, you can set a regexp by
hand, for example to get the title of a HTML page: the regexp engine
uses the re module, a Perl like regular expressions module
for Erlang.

<request>
 <dyn_variable name="mytitlevar"
 re="<title>(.*)</title>"/>
 <http url="/testtsung.html" method="GET" version="1.0"></http>
</request>

Previously (before 1.4.0), Tsung uses the old regexp module
from Erlang. This is now deprecated. The syntax was:

<request>
 <dyn_variable name="mytitlevar"
 regexp="<title>\(.*\)</title>"/>
 <http url="/testtsung.html" method="GET" version="1.0"></http>
</request>

6.7.3.2. XPath

A new way to analyze the server response has been introduced in the
release 1.3.0. It is available only for the HTTP and XMPP plugin since it is
based on XML/HTML parsing. This feature uses the mochiweb library
and only works with Erlang R12B and newer version.

This give us some benefices:

	XPath is simple to write and to read, and match very well with
HTML/XML pages

	The parser works on binaries(), and doesn’t create any
string().

	The cost of parsing the HTML/XML and build the tree is amortized
between all the dyn_variables defined for a given request

To utilize XPath expression, use a xpath attribute when
defining the dyn_variable, instead of re, like:

<dyn_variable name="field1_value" xpath="//input[@name='field1']/@value"/>
<dyn_variable name="title" xpath="/html/head/title/text()"/>

There is a bug in the XPath engine, result nodes from
“descendant-or-self” aren’t returned in document order. This isn’t a
problem for the most common cases.

However, queries like //img[1]/@src are not recommended,
as the order of the elements returned from //img is
not the expected.

The order is respected for paths without “descendant-or-self” axis, so
this: /html/body/div[2]/img[3]/@src is interpreted as
expected and can be safely used.

It is possible to use XPath to get a list of elements from an html page,
allowing dynamic retrieval of objects. You can either create embedded
Erlang code to parse the list produced, or use foreach that was introduced
in release 1.4.0.

For XMPP, you can get all the contacts in a dynamic variable:

<request subst="true">
 <dyn_variable name="contactJids"
 xpath="//iq[@type='result']/query[@xmlns='jabber:iq:roster']//item[string-length(@wr:type)=0]/@jid" />
 <jabber type="iq:roster:get" ack="local"/>
</request>

6.7.3.3. JSONPath

Another way to analyze the server response has been introduced in the
release 1.3.2 when the server is sending JSON data. It is
only for the HTTP plugin. This feature uses the mochiweb library and
only works with Erlang R13B and newer version.

Tsung implements a (very) limited subset of JSONPath as defined here
http://goessner.net/articles/JsonPath/

To utilize jsonpath expression, use a jsonpath attribute when
defining the <dyn_variable>>, instead of re, like:

<dyn_variable name="array3_value" jsonpath="field.array[3].value"/>

You can also use expressions Key=Val, e.g.:

<dyn_variable name="myvar" jsonpath="field.array[?name=bar].value"/>

6.7.3.4. PostgreSQL

New in version 1.3.2.

Since the PostgreSQL protocol is binary, regexp are not useful to
parse the output of the server. Instead, a specific parsing can be
done to extract content from the server’s response; to do this, use the
pgsql_expr attribute. Use data_row[L][C] to
extract the column C of the line L of the data output. You can also use
the literal name of the column (ie. the field name of the
table). This example extract 3 dynamic variables from the server’s
response:

First one, extract the 3rd column of the fourth row, then the mtime
field from the second row, and then it extract some data of the
row_description.

<request>
 <dyn_variable name="myvar" pgsql_expr="data_row[4][3]"/>
 <dyn_variable name="mtime" pgsql_expr="data_row[2].mtime"/>
 <dyn_variable name="row" pgsql_expr="row_description[1][3][1]"/>
 <pgsql type="sql">SELECT * from pgbench_history LIMIT 20;</pgsql>
</request>

A row description looks like this:

| =INFO REPORT==== 14-Apr-2010::11:03:22 ===
| ts_pgsql:(7:<0.102.0>) PGSQL: Pair={row_description,
| [{"tid",text,1,23,4,-1,16395},
| {"bid",text,2,23,4,-1,16395},
| {"aid",text,3,23,4,-1,16395},
| {"delta",text,4,23,4,-1,16395},
| {"mtime",text,5,1114,8,-1,16395},
| {"filler",text,6,1042,-1,26,16395}]}

So in the example, the row variable equals “aid”.

6.7.3.5. Decoding variables

It’s possible to decode variable that contains html entities encoded,
this is done with decode attribute set to html_entities.

<request>
 <dyn_variable name="mytitlevar"
 re="<title>(.*)</title>"
 decode="html_entities"/>
 <http url="/testtsung.html" method="GET" version="1.0"></http>
</request>

6.7.3.6. set_dynvars

Since version 1.3.0, more powerful dynamic variables are implemented.

You can set dynamic variables not only while parsing server data, but
you can build them using external files or generate them with a function
or generate random numbers/strings:

Several types of dynamic variables are implemented (sourcetype attribute):

	Dynamic variables defined by calling an Erlang function:

<setdynvars sourcetype="erlang" callback="ts_user_server:get_unique_id">
 <var name="id1" />

	Dynamic variables defined by parsing an external file:

<setdynvars sourcetype="file" fileid="userdb" delimiter=";" order="iter">
 <var name="user" />
 <var name="user_password" />
</setdynvars>

delimiter can be any string, and order can be
iter or random

	A dynamic variable can be a random number (uniform distribution)

<setdynvars sourcetype="random_number" start="3" end="32">
 <var name="rndint" />
</setdynvars>

	A dynamic variable can be a random string

<setdynvars sourcetype="random_string" length="13">
 <var name="rndstring1" />
</setdynvars>

	A dynamic variable can be a urandom string: this is much faster than
the random string, but the string is not really random: the same set
of characters is always used.

	A dynamic variable can be generated by dynamic evaluation of erlang code:

<setdynvars sourcetype="eval"
 code="fun({Pid,DynVars})->
 {ok,Val}=ts_dynvars:lookup(md5data,DynVars),
 ts_digest:md5hex(Val) end.">
 <var name="md5sum" />
</setdynvars>

In this case, we use tsung function ts_dynvars:lookup to retrieve the
dynamic variable named md5data. This dyn_variable md5data
can be set in any of the ways described in the Dynamic variables
section Dynamic variables.

	A dynamic variable can be generated by applying a JSONPath
specification (see JSONPath) to an existing dynamic
variable:

<setdynvars sourcetype="jsonpath" from="notification" jsonpath="result[?state=OK].node">
 <var name="deployed" />
</setdynvars>

	You can create dynamic variables to get the hostname and port of the current server

<setdynvars sourcetype="server">
 <var name="host" />
 <var name="port" />
</setdynvars>

	You can define a dynamic variable as constant value to use it in
a plugin (since version 1.5.0)

<setdynvars sourcetype="value" value="foobar">
 <var name="constant" />
</setdynvars>

A setdynvars can be defined anywhere in a session.

6.7.4. Checking the server’s response

With the tag match in a <request> tag, you can check
the server’s response against a given string, and do some actions
depending on the result. In any case, if it matches, this will
increment the match counter, if it does not match, the
nomatch counter will be incremented.

For example, let’s say you want to test a login page. If the login is
ok, the server will respond with Welcome ! in the
HTML body, otherwise not. To check that:

<request>
 <match do="continue" when="match">Welcome !</match>
 <http url="/login.php" version="1.0" method="POST"
 contents="username=nic&user_password=sesame"
 content_type="application/x-www-form-urlencoded" >
</request>

You can use a regexp instead of a simple string.

The list of available actions to do is:

	continue: do nothing, continue (only update match or nomatch counters)

	log: log the request id, userid, sessionid, name in a file (in match.log)

	abort: abort the session

	abort_test: abort the whole test

	restart: restart the session. The maximum number of
restarts is 3 by default.

	loop: repeat the request, after 5 seconds. The maximum number of
loops is 20 by default.

	dump: dump the content of the response in a file. The filename
is match-<userid>-<sessionid>-<requestid>-<dumpid>.dump

You can mixed several match tag in a single request:

<request>
 <match do="loop" sleep_loop="5" max_loop="10" when="match">Retry</match>
 <match do="abort" when="match">Error</match>
 <http url='/index.php' method=GET'>
</request>

You can also do the action on nomatch instead of match.

If you want to skip the HTTP headers, and match only on the body, you
can use skip_headers=’http’. Also, you can apply a
function to the content before matching; for example the following
example use both features to compute the md5sum on the body of a HTTP
response, and compares it to a given value:

<match do='log' when='nomatch' skip_headers='http' apply_to_content='ts_digest:md5hex'>01441debe3d7cc65ba843eee1acff89d</match>
<http url="/" method="GET" version="1.1"/>

You can also use dynamic variables, using the subst attribute:

<match do='log' when='nomatch' subst='true' >%%_myvar%%</match>
<http url="/" method="GET"/>

Since 1.5.0, it’s now possible to add name attribute in match tag to name a record printed in match.log as follow:

<match do='log' when='match' name='http_match_200ok'>200OK</match>
<http url="/" method="GET" version="1.1"/>

6.7.5. Loops, If, Foreach

Since 1.3.0, it’s now possible to add conditional/unconditional loops in a session.

Since 1.4.0, it is possible to loop through a list of dynamic variables thanks to foreach.

6.7.5.1. <for>

Repeat the enclosing actions a fixed number of times. A dynamic
variable is used as counter, so the current iteration could be used in
requests. List of attributes:

	from

	Initial value

	to

	Last value

	incr

	Amount to increment in each iteration

	var

	Name of the variable to hold the counter

<for from="1" to="10" incr="1" var="counter">
 ...
 <request> <http url="/page?id=%%_counter%%"></http> </request>
 ...
</for>

6.7.5.2. <repeat>

Repeat the enclosing action (while or until) some condition. This is
intended to be used together with <dyn_variable> declarations. List of
attributes:

	name

	Name of the repeat

	max_repeat

	Max number of loops (default value is 20)

The last element of repeat must be either <while> or <until> example:

<repeat name="myloop" max_repeat="40">
 ...
 <request>
 <dyn_variable name="result" re="Result: (.*)"/>
 <http url="/random" method="GET" version="1.1"></http>
 </request>
 ...
 <until var="result" eq="5"/>
</repeat>

Since 1.3.1, it’s also possible to add if statements based on
dynamic variables:

6.7.5.3. <if>

<if var="tsung_userid" eq="3">
 <request> <http url="/foo"/> </request>
 <request> <http url="/bar"/> </request>
</if>

You can use eq or neq to check the variable.

Since 1.5.1 you can also use the comparison operators gt,
gte, lt and lte to do respectively greater than,
greater than or equal to, less than and less than or equal to.

If the dynamic variable is a list (output from XPath for example), you
can access to the n-th element of a list like this:

<if var="myvar[1]" eq="3">

Here we compare the first element of the list to 3.

6.7.5.4. <abort>

Since 1.7.0 you can abort the session or the whole test by using an <abort/> element in a session (can be used inside an <if> statement for example). By default it will abort the current user session, but you can abort the whole test by setting the type attribute to all <abort type='all'/>

6.7.5.5. <foreach>

Repeat the enclosing actions for all the elements contained in the list specified. The basic syntax is as follows:

<foreach name="element" in="list">
 <request subst="true">
 <http url="%%_element%%" method="GET" version="1.1"/>
 </request>
</foreach>

It is possible to limit the list of elements you’re looping through, thanks to the use of the include or exclude attributes inside the foreach statement.

As an example, if you want to include only elements with a local path you can write:

<foreach name="element" in="list" include="^/.*$">

If you want to exclude all the elements from a specific URI, you would write:

<foreach name="element" in="list" exclude="http:\/\/.*\.tld\.com\/.*$">

You can combine this with a XPath query. For instance the following scenario will retrieve all the images specified on a web page:

<request subst="true">
 <dyn_variable name="img_list" xpath="//img/@src"/>
 <http url="/mypage.html" method="GET" version="1.1"/>
</request>
<foreach name="img" in="img_list">
 <request subst="true">
 <http url="%%_img%%" method="GET" version="1.1"/>
 </request>
</foreach>

6.7.6. Rate limiting

Since version 1.4.0, rate limiting can be enabled, either globally
(see Setting options), or for each session separately.

For example, to limit the rate to 64KB/sec for a given session:

<session name="http-example" probability="70" type="ts_http">
 <set_option name="rate_limit" value="64" />
 ...
</session>

Only the incoming traffic is rate limited currently.

6.7.7. Requests exclusion

New in version 1.5.1.

It is possible to exclude some request for a special run. To do this
you have to tag them and use the option -x when launching the run.

For example, to exclude the GET of foo.png, add a tag to the
respective request:

<request>
 <http url="/" method="GET"></http>
</request>
<request tag="image">
 <http url="/foo.png" method="GET"></http>
</request>

Then launch the run with:

tsung -f SCENARIO.xml -x image start

Only the GET to / will be performed.

Note that request tags also get logged on dumptraffic=”protocol” (see File structure)

6.7.8. Client certificate

New in version 1.5.1.

It is possible to use a client certificate for ssl authentication. You
can use dynamic variables to set some parameters of the certificate
(and the key password is optional).

<session name="https-with-cert" probability="70" type="ts_http">

 <set_option name="certificate">
 <certificate cacertfile="/etc/ssl/ca.pem"
 keyfile="%%_keyfile%%" keypass="%%_keypass%%" certfile="/home/nobody/.tsung/client.pem"/>
 </set_option>

7. Statistics and Reports

7.1. File format

By default, Tsung use its own format (see FAQ What is the format of the stats file tsung.log?).

Since version 1.4.2, you can configure Tsung to use a JSON format;
however in this case, the tools tsung_stats.pl and
tsung_plotter will not work with the JSON files.

To enable JSON output, use:

<tsung backend="json" ...>

Example output file with JSON:

{
 "stats": [
 {"timestamp": 1317413841, "samples": []},
 {"timestamp": 1317413851, "samples": [
 {"name": "users", "value": 0, "max": 0},
 {"name": "users_count", "value": 0, "total": 0},
 {"name": "finish_users_count", "value": 0, "total": 0}]},
 {"timestamp": 1317413861, "samples": [
 {"name": "users", "value": 0, "max": 1},
 {"name": "load", "hostname": "requiem", "value": 1, "mean":
 0.0,"stddev": 0,"max": 0.0,"min": 0.0 ,"global_mean": 0
 ,"global_count": 0},
 {"name": "freemem", "hostname": "requiem", "value": 1, "mean":
 2249.32421875,"stddev": 0,"max": 2249.32421875,"min":
 2249.32421875 ,"global_mean": 0 ,"global_count": 0},
 {"name": "cpu", "hostname": "requiem", "value": 1, "mean":
 4.790419161676647,"stddev": 0,"max": 4.790419161676647,"min":
 4.790419161676647 ,"global_mean": 0 ,"global_count": 0},
 {"name": "session", "value": 1, "mean": 387.864990234375,"stddev":
 0,"max": 387.864990234375,"min": 387.864990234375
 ,"global_mean": 0 ,"global_count": 0},
 {"name": "users_count", "value": 1, "total": 1},
 {"name": "finish_users_count", "value": 1, "total": 1},
 {"name": "request", "value": 5, "mean": 75.331787109375,"stddev":
 46.689242405019954,"max": 168.708984375,"min": 51.744873046875
 ,"global_mean": 0 ,"global_count": 0},
 {"name": "page", "value": 1, "mean": 380.7548828125,"stddev":
 0.0,"max": 380.7548828125,"min": 380.7548828125 ,"global_mean":
 0 ,"global_count": 0},
 {"name": "connect", "value": 1, "mean": 116.70703125,"stddev":
 0.0,"max": 116.70703125,"min": 116.70703125 ,"global_mean": 0
 ,"global_count": 0},
 {"name": "size_rcv", "value": 703, "total": 703},
 {"name": "size_sent", "value": 1083, "total": 1083},
 {"name": "connected", "value": 0, "max": 0}, {"name": "http_304", "value": 5, "total": 5}]}]}

7.2. Available stats

	request Response time for each request.

	page Response time for each set of requests (a page is a group
of request not separated by a thinktime).

	connect Duration of the connection establishment.

	reconnect Number of reconnection.

	size_rcv Size of responses in bytes.

	size_sent Size of requests in bytes.

	session Duration of a user’s session.

	users Number of simultaneous users (it’s session has started, but not yet finished).

	connected number of users with an opened TCP/UDP connection (example: for
HTTP, during a think time, the TCP connection can be closed by the server,
and it won’t be reopened until the thinktime has expired). new in 1.2.2.

	custom transactions

The mean response time (for requests, page, etc.) is computed every 10
sec (and reset). That’s why you have the highest mean and lowest mean
values in the Stats report. Since version 1.3.0, the mean for
the whole test is also computed.

7.2.1. HTTP specific stats:

	counter for each response status (200, 404, etc.)

7.2.2. Jabber specific stats:

	request_noack Counter of no_ack requests. Since
response time is meaningless with no_ack
requests, we keep a separate stats for this. new in 1.2.2.

	async_unknown_data_rcv Only if bidi is true for a
session. Count the number of messages received from the server
without doing anything. new in 1.2.2.

	async_data_sent Only if bidi is true for a
session. Count the number of messages sent to the server in response
of a message received from the server. new in 1.2.2.

7.2.3. OS monitoring stats:

	{load,<host>} System load average during the last minute

	{cpu,<host} CPU percentage (Maximum is 100%, ex: on dual core system, 100% means: both cores are 100% used)

	{freemem,<host>} Free Memory

7.3. Design

A bit of explanation on the design and internals of the statistics engine:

Tsung was designed to handle thousands of requests/sec, for very
long period of times (several hours) so it do not write all data to
the disk (for performance reasons). Instead it computes on the fly an
estimation of the mean and standard variation for each type of data,
and writes these estimations every 10 seconds to the disk (and then
starts a new estimation for the next 10 sec). These computations are
done for two kinds of data:

	sample, for things like response time

	sample_counter when the input is a cumulative one (number of
packet sent for ex.).

There are also two other types of useful data (no averaging is done for
those):

	counter: a simple counter, for HTTP status code for ex.

	sum for ex. the cumulative HTTP response’s size (it gives an
estimated bandwidth usage).

7.4. Generating the report

Since version 1.6.0, you can use the embedded web server started
by the controller on port 8091. So for example if your controller is
running on node0, use the URL http://node0:8091/ in your
browser. It will display the current status of Tsung (see
Dashboard) and generate on the fly the report and
graphs. There’s also an option when you start Tsung to keep the
controller alive, even when the test if finished, in order to use the
embedded web server (see -k option). By default the web server
will stop when the test is finished.

[image: _images/tsung-dashboard.png]
Dashboard

You can still generate the reports by manually during or after the tests:

cd to the log directory of your test (say
~/.tsung/log/20040325-16:33/) and use the script
tsung_stats.pl:

/usr/lib/tsung/bin/tsung_stats.pl

Note

You can generate the statistics even when the test is running!

use –help to view all available options:

Available options:
 [--help] (this help text)
 [--verbose] (print all messages)
 [--debug] (print receive without send messages)
 [--dygraph] use dygraphs (http://dygraphs.com) to render graphs
 [--noplot] (don't make graphics)
 [--gnuplot <command>] (path to the gnuplot binary)
 [--nohtml] (don't create HTML reports)
 [--logy] (logarithmic scale for Y axis)
 [--tdir <template_dir>] (Path to the HTML tsung templates)
 [--noextra (don't generate graphics from extra data (os monitor, etc)
 [--rotate-xtics (rotate legend of x axes)
 [--stats <file>] (stats file to analyse, default=tsung.log)
 [--img_format <format>] (output format for images, default=png
 available format: ps, svg, png, pdf)

Version 1.4.0 adds a new graphical output based on
http://dygraphs.com.

7.5. Tsung summary

Figure Report shows an example of a summary report.

[image: _images/tsung-report.png]
Report

7.6. Graphical overview

Figure Graphical output shows an example of a graphical report.

[image: _images/tsung-graph.png]
Graphical output

7.7. Tsung Plotter

Tsung-Plotter (tsplot} command) is an optional tool recently
added in the Tsung distribution (it is written in Python), useful to
compare different tests ran by Tsung. tsplot is able to
plot data from several tsung.log files onto the same charts,
for further comparisons and analyzes. You can easily customize the
plots you want to generate by editing simple configuration files. You
can get more information in the manual page of the tool (man
tsplot).

Example of use:

tsplot "First test" firsttest/tsung.log "Second test" secondtest/tsung.log -d outputdir

Here’s an example of the charts generated by tsplot (figure Graphical output of tsplot):

[image: _images/connected.png]
Graphical output of tsplot

7.8. RRD

A contributed perl script tsung-rrd.pl is able to create rrd
files from the Tsung log files. It’s available in /usr/lib/tsung/bin/tsung-rrd.pl.

8. References

	Tsung home page: http://tsung.erlang-projects.org/

	Tsung description (French) [4]

	Erlang web site http://www.erlang.org/

	Erlang programmation, Mickaël Rémond, Editions Eyrolles, 2003 [5]

	Making reliable system in presence of software errors, Doctoral Thesis,
Joe Armstrong, Stockholm, 2003 [6]

	Tutorial on How to write a Tsung plugin, written by t ty,
http://www.process-one.net/en/wiki/Writing_a_Tsung_plugin/

	[4]	http://www.erlang-projects.org/Members/mremond/events/dossier_de_presentat/block_10766817551485/file

	[5]	http://www.editions-eyrolles.com/php.accueil/Ouvrages/ouvrage.php3?ouv_ean13=9782212110791

	[6]	http://www.sics.se/~joe/thesis/armstrong_thesis_2003.pdf

9. Acknowledgments

The first version of this document was based on a talk given by Mickael
Rémond [2] during an Object
Web benchmarking workshop in April 2004 (more info at
http://jmob.objectweb.org/).

	[2]	mickael.remond@erlang-fr.org

10. Frequently Asked Questions

10.1. Can’t start distributed clients: timeout error

Most of the time, when a crash happened at startup without any traffic
generated, the problem arise because the main Erlang controller node cannot
create a “slave” Erlang virtual machine. The message looks like:

Can't start newbeam on host 'XXXXX (reason: timeout) ! Aborting!

The problem is that the Erlang slave module cannot start a remote slave
node.

You can test this using this simple command on the controller node
(remotehost is the name of the client node):

>erl -rsh ssh -sname foo -setcookie mycookie

Eshell V5.4.3 (abort with ^G)
(foo@myhostname)1>slave:start(remotehost,bar,"-setcookie mycookie").

You should see this:

{ok,bar@remotehost}

If you got {error,timeout}, it can be caused by several problems:

	ssh in not working (you must have a key without passphrase, or
use an agent)

	Tsung and Erlang are not installed on all clients nodes

	Erlang version or location (install path) is not the same on all clients nodes

	A firewall is dropping Erlang packets: Erlang virtual machines use
several TCP ports (dynamically generated) to communicate (if you are
using EC2, you may have to change the Security Group that is applied on the VMs used
for Tsung: open port range 0 - 65535)

	SELinux: You should disable SELinux on all clients.

	Bad /etc/hosts:
This one is wrong (real hostname should not refer to localhost/loopback):

127.0.0.1 localhost myhostname

This one is good:

127.0.0.1 localhost
192.168.3.2 myhostname

	sshd configuration:
For example, for SuSE 9.2 sshd is compiled with restricted set of
paths (ie. when you shell into the account you get the users shell,
when you execute a command via ssh you don’t) and this makes it
impossible to start an Erlang node (if Erlang is installed in
/usr/local for example).

Run:

ssh myhostname erl

If the Erlang shell doesn’t start then check what paths sshd was compiled with
(in SuSE see /etc/ssh/sshd_config) and symlink from one of the approved paths
to the Erlang executable (thanks to Gordon Guthrie for reporting this).

	old beam processes (Erlang virtual machines) running on client nodes: kill all
beam processes before starting Tsung.

Note that you do not need to use the 127.0.0.1 address in the configuration file.
It will not work if you use it as the injection interface. The shortname
of your client machine should not refer to this address.

Warning Tsung launches a new Erlang virtual machine to do the actual injection
even when you have only one machine in the injection cluster (unless
use_controller_vm is set to true). This is because it
needs to by-pass some limit with the number of open socket from a
single process (1024 most of the time). The idea is to have several
system processes (Erl beam) that can handle only a small part of the
network connection from the given computer. When the
maxusers limit (simultaneous) is reach, a new Erlang beam
is launched and the newest connection can be handled by the new beam).

New in 1.1.0: If you don’t use the distributed feature of
Tsung and have trouble to start a remote beam on a local machine,
you can set the use_controller_vm attribute to true:

<client host="mymachine" use_controller_vm="true">

10.2. Tsung crashes when I start it

Does your Erlang system has SSL support enabled ?

to test it:

> erl
Eshell V5.2 (abort with ^G)
1> ssl:start().
you should see 'ok'

10.3. Why do i have error_connect_emfile errors?

emfile error means : too many open files

This happens usually when you set a high value for maxusers
(in the <client> section) (the default value is 800).

The errors means that you are running out of file descriptors; you
must check that maxusers is less than the maximum number of
file descriptors per process in your system (see ulimit -n).

You can either raise the limit of your operating system (see
/etc/security/limits.conf for Linux) or decrease maxusers
Tsung will have to start several virtual machine on the same host to
bypass the maxusers limit.

It could be good if you want to test a large number of users to make some
modifications to your system before launching Tsung:

	Put the domain name into /etc/hosts if you don’t want the DNS
overhead and you only want to test the target server

	Increase the maximum number of open files and customize TCP settings in
/etc/sysctl.conf. For example:

net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.ip_local_port_range = 1024 65000
fs.file-max = 65000

10.4. Tsung still crashes/fails when I start it!

First look at the log file
~/.tsung/log/XXX/tsung_controller@yourhostname to see if there
is a problem.

If the file is not created and a crashed dump file is present, maybe
you are using a binary installation of Tsung not compatible with the
version of Erlang you used.

If you see nothing wrong, you can compile Tsung with full
debugging: recompile with make debug, and
don’t forget to set the loglevel to debug in the XML file
(see tsung.xml log levels).

To start the debugger or see what happen, start Tsung with the
debug argument instead of start. You will have
an Erlang shell on the tsung_controller node. Use
toolbar:start(). to launch the graphical tools provided by
Erlang.

10.5. Can I dynamically follow redirect with HTTP?

If your HTTP server sends 30X responses (redirect) with dynamic URLs,
you can handle this situation using a dynamic variable:

<request>
 <dyn_variable name="redirect" re="Location: (http://.*)\r"/>
 <http url="index.html" method="GET" ></http>
</request>

<request subst="true">
 <http url="%%_redirect%%" method="GET"></http>
</request>

You can even handle the case where the server use several redirections
successively using a repeat loop (this works only with version 1.3.0 and up):

<request>
 <dyn_variable name="redirect" re="Location: (http://.*)\r"/>
 <http url='/test/redirect.html' method='GET'></http>
</request>

<repeat name="redirect_loop" max_repeat="5">
 <request subst="true">
 <dyn_variable name="redirect" re="Location: (http://.*)\r"/>
 <http url="%%_redirect%%" method="GET"></http>
 </request>
 <until var="redirect" eq=""/>
</repeat>

10.6. What is the format of the stats file tsung.log?

Sample tsung.log:

stats: dump at 1218093520
stats: users 247 247
stats: connected 184 247
stats: users_count 184 247
stats: page 187 98.324 579.441 5465.940 2.177 9.237 595 58
stats: request 1869 0.371 0.422 5.20703125 0.115 0.431 7444062 581
stats: connect 186 0.427 0.184 4.47216796875 0.174 0.894 88665254 59
stats: tr_login 187 100.848 579.742 5470.223 2.231 56.970 91567888 58
stats: size_rcv 2715777 3568647
stats: 200 1869 2450
stats: size_sent 264167 347870
stats: dump at 1218093530
stats: users 356 356
stats: users_count 109 356
stats: connected -32 215
stats: page 110 3.346 0.408 5465.940 2.177 77.234 724492 245
stats: request 1100 0.305 0.284 5.207 0.115 0.385 26785716 2450
stats: connect 110 0.320 0.065 4.472 0.174 0.540 39158164 245
stats: tr_login 110 3.419 0.414 5470.223 2.231 90.461 548628831 245
stats: size_rcv 1602039 5170686
stats: 200 1100 3550
stats: size_sent 150660 498530
...

the format is, for request, page, session and transactions tr_XXX:

stats: name, 10sec_count, 10sec_mean, 10sec_stddev, max, min, mean, count

or for HTTP returns codes, size_sent and size_rcv:

stats: name, count(during the last 10sec), totalcount(since the beginning)

10.7. How can I compute percentile/quartiles/median for transactions or requests response time?

It’s not directly possible. But since version 1.3.0, you can
use a new experimental statistic backend: set backend="fullstats" in the
<tsung> section of your configuration file (also see File structure).

This will print every statistics data in a raw format in a file named
tsung-fullstats.log. Warning: this may impact the performance of
the controller node (a lot of data has to be written to disk).

The data looks like:

{sum,connected,1}
{sum,connected,-1}
[{sample,request,214.635},
 {sum,size_rcv,268},
 {sample,page,831.189},
 {count,200},
 {sum,size_sent,182},
 {sample,connect,184.787},
 {sample,request,220.974},
 {sum,size_rcv,785},
 {count,200},
 {sum,size_sent,164},
 {sample,connect,185.482}]
{sum,connected,1}
[{count,200},{sum,size_sent,161},{sample,connect,180.812}]
[{sum,size_rcv,524288},{sum,size_rcv,524288}]

Since version 1.5.0, a script tsung_percentile.pl is
provided to compute the percentiles from this file.

10.8. How can I specify the number of concurrent users?

You can’t. But it’s on purpose: the load generated by
Tsung is dependent on the arrival time between new
clients. Indeed, once a client has finished his session in
Tsung, it stops. So the number of concurrent users is
a function of the arrival rate and the mean session duration.

For example, if your web site has 1,000 visits/hour, the arrival rate
is 1000/3600 = 0.2778 visits/second. If you want to simulate the same
load, set the inter-arrival time is to 1/0.27778 = 3.6 sec (e.g. <users
interarrival="3.6" unit="second"> in the arrivalphase node in the
XML config file).

10.9. SNMP monitoring doesn’t work?!

It use SNMP v1 and the “public” community. It has been tested with
http://net-snmp.sourceforge.net/.

You can try with snmpwalk to see if your snmpd config is ok:

>snmpwalk -v 1 -c public IP-OF-YOUR-SERVER .1.3.6.1.4.1.2021.4.5.0
UCD-SNMP-MIB::memTotalReal.0 = INTEGER: 1033436

SNMP doesn’t work with Erlang R10B and Tsung older than 1.2.0.

There is a small bug in the snmp_mgr module in old Erlang
release (R9C-0). This is fixed in Erlang R9C-1 and up, but you can apply this patch to make it
work on earlier version:

--- lib/snmp-3.4/src/snmp_mgr.erl.orig 2004-03-22 15:21:59.000000000 +0100
+++ lib/snmp-3.4/src/snmp_mgr.erl 2004-03-22 15:23:46.000000000 +0100
@@ -296,6 +296,10 @@
 end;
 is_options_ok([{recbuf,Sz}|Opts]) when 0 < Sz, Sz =< 65535 ->
 is_options_ok(Opts);
+is_options_ok([{receive_type, msg}|Opts]) ->
+ is_options_ok(Opts);
+is_options_ok([{receive_type, pdu}|Opts]) ->
+ is_options_ok(Opts);
 is_options_ok([InvOpt|_]) ->
 {error,{invalid_option,InvOpt}};
 is_options_ok([]) -> true.

10.10. How can i simulate a fix number of users?

Use maxnumber to set the max number of concurrent users in a
phase, and if you want Tsung to behave like ab, you can use a loop
in a session (to send requests as fast as possible); you can also define a
max duration in <load>.

<load duration="5" unit="minute">
 <arrivalphase phase="1" duration="10" unit="minute">
 <users maxnumber="10" arrivalrate="100" unit="second"></users>
</arrivalphase>
</load>
<sessions>
 <session probability="100" name="ab">
 <for from="1" to="1000" var="i">
 <request>
 <http url="http://myserver/index.html" method="GET"></http>
 </request>
 </for>
 </session>
</sessions>

11. Errors list

11.1. error_closed

Only for non persistent session (XMPP); the server unexpectedly closed
the connection; the session is aborted.

11.2. error_inet_<ERRORNAME>

Network error; see http://www.erlang.org/doc/man/inet.html for the list of all errors.

11.3. error_unknown_data

Data received from the server during a thinktime (not for unparsed
protocol like XMPP). The session is aborted.

11.4. error_unknown_msg

Unknown message received (see the log files for more information). The session is aborted.

11.5. error_unknown

Abnormal termination of a session, see log file for more information.

11.6. error_repeat_<REPEATNAME>

Error in a repeat loop (undefined dynamic variable usually).

11.7. error_send_<ERRORNAME>

Error while sending data to the server, see
http://www.erlang.org/doc/man/inet.html for the list of all errors.

11.8. error_send

	Unexpected error while sending data to the server,

	see the logfiles for more information.

11.9. error_connect_<ERRORNAME>

Error while establishing a connection to the server. See
http://www.erlang.org/doc/man/inet.html for the list of all errors.

11.10. error_no_online

	XMPP: No online user available (usually for a chat message destinated

	to a online user)

11.11. error_no_offline

XMPP: No offline user available (usually for a chat message destinated
to a offline user)

11.12. error_no_free_userid

For XMPP: all users Id are already used (userid_max is too low ?)

11.13. error_next_session

A clients fails to gets its session parameter from the config_server;
the controller may be overloaded ?

11.14. error_mysql_<ERRNO>

Error reported by the mysql server (see
http://dev.mysql.com/doc/refman/5.0/en/error-messages-server.html)

11.15. error_mysql_badpacket

Bad packet received for mysql server while parsing data.

11.16. error_pgsql

Error reported by the postgresql server.

12. Changelog

13. tsung-1.0.dtd

<?xml version="1.0" encoding="utf-8" ?>
<!ELEMENT tsung (information?, clients, servers, monitoring?, load, options?, sessions)>

<!ELEMENT information (name|description|username|organisation)*>

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT username (#PCDATA)>
<!ELEMENT organisation (#PCDATA)>

<!ATTLIST tsung
 dumptraffic (true | false | light | protocol | protocol_local) "false"
 backend (text | json| rrdtool | fullstats) "text"
 loglevel (emergency|critical|error|warning|notice|info|debug) "notice"
 version NMTOKEN #IMPLIED>

<!ELEMENT servers (server+)>
<!ELEMENT server EMPTY>
<!ATTLIST server
 host NMTOKEN #REQUIRED
 port NMTOKEN #REQUIRED
 weight NMTOKEN "1"
 type (ssl | tcp | udp | erlang | ssl6 | tcp6 | udp6 |bosh | bosh_ssl | websocket | websocket_ssl) #REQUIRED>

<!ELEMENT clients (client+)>
<!ELEMENT client (ip*| iprange) >
<!ATTLIST client
 cpu NMTOKEN "1"
 type (machine | batch) "machine"
 host NMTOKEN #IMPLIED
 batch (torque | pbs | lsf | oar) #IMPLIED
 scan_intf NMTOKEN #IMPLIED
 maxusers NMTOKEN "800"
 use_controller_vm (true | false) "false"
 weight NMTOKEN "1">

<!ELEMENT ip EMPTY>
<!ATTLIST ip
 value NMTOKEN #REQUIRED
 scan (true| false) "false"
>
<!ELEMENT iprange EMPTY>
<!ATTLIST iprange
 value NMTOKEN #REQUIRED
 version NMTOKEN "v4"
>

<!ELEMENT monitoring (monitor+)>
<!ELEMENT monitor (snmp? | munin? | mysqladmin?)>
<!ATTLIST monitor
 host NMTOKEN #REQUIRED
 batch (true | false) "false"
 type (snmp | erlang | munin) "erlang">

<!ELEMENT mysqladmin EMPTY>
<!ATTLIST mysqladmin
 port NMTOKEN "3306"
 username NMTOKEN "root"
 password NMTOKEN #IMPLIED>

<!ELEMENT snmp (oid)*>
<!ATTLIST snmp
 version (v1 | v2) "v1"
 community NMTOKEN "public"
 port NMTOKEN "161">

<!ELEMENT oid EMPTY>
<!ATTLIST oid
 value NMTOKEN #REQUIRED
 name NMTOKEN #REQUIRED
 type NMTOKEN "sample"
 eval CDATA #IMPLIED>

<!ELEMENT munin EMPTY>
<!ATTLIST munin
 port NMTOKEN "4949">

<!ELEMENT load (arrivalphase | user)+>
<!ATTLIST load
 duration NMTOKEN #IMPLIED
 unit (hour | minute | second) "second"
 loop NMTOKEN "0"
 >

<!ELEMENT arrivalphase (users | session_setup)+>
<!ATTLIST arrivalphase
 duration NMTOKEN #REQUIRED
 phase NMTOKEN #REQUIRED
 wait_all_sessions_end NMTOKEN "false"
 unit (hour | minute | second | millisecond) #REQUIRED>

<!ELEMENT users EMPTY>
<!ATTLIST users
 interarrival NMTOKEN #IMPLIED
 arrivalrate NMTOKEN #IMPLIED
 unit (hour | minute | second) #REQUIRED
 maxnumber NMTOKEN #IMPLIED>

<!ELEMENT user EMPTY>
<!ATTLIST user
 start_time NMTOKEN #IMPLIED
 unit (hour | minute | second | millisecond) "second"
 session CDATA #REQUIRED>

<!ELEMENT options (option*)>
<!ELEMENT option (user_agent*)>
<!ATTLIST option
 name NMTOKEN #REQUIRED
 override (true | false) #IMPLIED
 random (true | false) #IMPLIED
 id NMTOKEN #IMPLIED
 min NMTOKEN #IMPLIED
 max NMTOKEN #IMPLIED
 type (ts_http | ts_jabber | ts_pgsql | ts_amqp) #IMPLIED
 value CDATA #IMPLIED>

<!ELEMENT set_option (user_agent*| certificate)>
<!ATTLIST set_option
 name NMTOKEN #REQUIRED
 id NMTOKEN #IMPLIED
 min NMTOKEN #IMPLIED
 max NMTOKEN #IMPLIED
 type (ts_http | ts_jabber | ts_pgsql) #IMPLIED
 value CDATA #IMPLIED>

<!ELEMENT certificate EMPTY >
<!ATTLIST certificate
 cacertfile CDATA #IMPLIED
 keyfile CDATA #IMPLIED
 keypass CDATA #IMPLIED
 certfile CDATA #IMPLIED
>

<!ELEMENT sessions (session+)>
<!ELEMENT session (request | thinktime | transaction | setdynvars | for |
repeat | if | change_type | foreach | set_option | interaction | abort)*>
<!ATTLIST session
 name CDATA #REQUIRED
 bidi CDATA #IMPLIED
 persistent (true | false) #IMPLIED
 probability NMTOKEN #IMPLIED
 weight NMTOKEN #IMPLIED
 type (ts_jabber | ts_http | ts_raw | ts_pgsql | ts_ldap | ts_webdav |ts_mysql| ts_fs | ts_shell | ts_job | ts_websocket | ts_amqp | ts_mqtt) #REQUIRED>

<!ELEMENT session_setup EMPTY>
<!ATTLIST session_setup
 name CDATA #REQUIRED
 probability NMTOKEN #IMPLIED
 weight NMTOKEN #IMPLIED
>

<!ELEMENT abort EMPTY>
<!ATTLIST abort
 type (session|all) "session" >

<!ELEMENT interaction EMPTY>
<!ATTLIST interaction
 action (send|receive) #REQUIRED
 id CDATA #REQUIRED>

<!ELEMENT change_type EMPTY>
<!ATTLIST change_type
 new_type (ts_jabber | ts_http | ts_raw | ts_pgsql | ts_ldap | ts_webdav | ts_mysql | ts_fs | ts_shell | ts_job | ts_websocket | ts_amqp | ts_mqtt) #REQUIRED
 host CDATA #REQUIRED
 port CDATA #REQUIRED
 server_type NMTOKEN #REQUIRED
 store (true | false) "false"
 restore (true | false) "false"
 bidi (true | false) "false"
 >

<!ELEMENT request (match*, dyn_variable*, (http | jabber | raw |
 pgsql | ldap | mysql |fs | shell | job | websocket | amqp | mqtt))>
<!ATTLIST request
 subst (true|false|all_except_body) "false"
 tag NMTOKEN "undefined"
 >

<!ELEMENT match (#PCDATA)>
<!ATTLIST match
 do (continue|loop|abort|restart|log|dump|abort_test) "continue"
 when (match|nomatch) "match"
 subst (true|false) "false"
 loop_back NMTOKEN "0"
 name NMTOKEN "-"
 max_loop NMTOKEN "20"
 max_restart NMTOKEN "3"
 sleep_loop NMTOKEN "5"
 apply_to_content NMTOKEN "undefined"
 skip_headers NMTOKEN "no"
 >

<!ELEMENT thinktime EMPTY>
<!ATTLIST thinktime
 random (true|false) "false"
 value CDATA #IMPLIED
 min NMTOKEN #IMPLIED
 max NMTOKEN #IMPLIED
 >

<!ELEMENT user_agent (#PCDATA)*>
<!ATTLIST user_agent
 probability NMTOKEN #REQUIRED
 >

<!ELEMENT transaction (request | setdynvars | thinktime | for | repeat
 | if | foreach | interaction | abort)+>
<!ATTLIST transaction name NMTOKEN #REQUIRED>

<!ELEMENT http (oauth?, www_authenticate?, soap?, http_header*, add_cookie*)>
<!ATTLIST http
 contents CDATA #IMPLIED
 contents_from_file CDATA #IMPLIED
 content_type CDATA #IMPLIED
 if_modified_since CDATA #IMPLIED
 method (GET | POST | PUT | PATCH | DELETE | HEAD | PROPFIND | PROPPATCH | COPY | MOVE | LOCK | UNLOCK | MKCOL | MKACTIVITY | OPTIONS | REPORT | VERSION-CONTROL | MERGE | CHECKOUT) "GET"
 url CDATA #REQUIRED
 version (1.0 | 1.1) "1.1" >

<!ELEMENT soap EMPTY >
<!ATTLIST soap action CDATA #REQUIRED >

<!ELEMENT dyn_variable EMPTY >
<!ATTLIST dyn_variable
 name CDATA #REQUIRED
 xpath CDATA #IMPLIED
 re CDATA #IMPLIED
 jsonpath CDATA #IMPLIED
 pgsql_expr CDATA #IMPLIED
 regexp CDATA #IMPLIED
 header CDATA #IMPLIED
 decode (html_entities | false) "false" >

<!ELEMENT http_header EMPTY >
<!ATTLIST http_header
 name CDATA #REQUIRED
 encoding CDATA #IMPLIED
 value CDATA #IMPLIED >

<!ELEMENT add_cookie EMPTY >
<!ATTLIST add_cookie
 key CDATA #REQUIRED
 domain CDATA #IMPLIED
 path CDATA #IMPLIED
 value CDATA #REQUIRED >

<!ELEMENT www_authenticate EMPTY >
<!ATTLIST www_authenticate
 passwd CDATA #REQUIRED
 userid CDATA #REQUIRED
 nonce CDATA #IMPLIED
 opaque CDATA #IMPLIED
 cnonce CDATA #IMPLIED
 nc CDATA #IMPLIED
 realm CDATA #IMPLIED
 qop CDATA #IMPLIED
 type (basic | digest) "basic" >

<!ELEMENT oauth EMPTY >
<!ATTLIST oauth
 consumer_key CDATA #REQUIRED
 consumer_secret CDATA #REQUIRED
 access_token CDATA #IMPLIED
 access_token_secret CDATA #IMPLIED
 method (HMAC-SHA1 | PLAINTEXT | RSA-SHA1) "HMAC-SHA1">

<!ELEMENT jabber (xmpp_authenticate?) >
<!ATTLIST jabber
 ack (global | local | no_ack | parse | bidi_ack) #REQUIRED
 destination (online | offline | random | unique | previous) "random"
 id NMTOKEN #IMPLIED
 size NMTOKEN "0"
 data CDATA #IMPLIED
 type NMTOKEN #REQUIRED
 stamped (true | false) "false"
 show (away|chat|dnd|xa) "chat"
 status CDATA "Available"
 nick CDATA #IMPLIED
 room CDATA #IMPLIED
 group CDATA #IMPLIED
 node CDATA #IMPLIED
 send_version (true | false) "false"
 regexp CDATA #IMPLIED
 resource CDATA "tsung"
 node_type CDATA #IMPLIED
 version CDATA #IMPLIED
 cacertfile CDATA #IMPLIED
 keyfile CDATA #IMPLIED
 keypass CDATA #IMPLIED
 certfile CDATA #IMPLIED
 subid CDATA #IMPLIED >

<!ELEMENT xmpp_authenticate EMPTY >
<!ATTLIST xmpp_authenticate
 passwd CDATA #REQUIRED
 username CDATA #REQUIRED >

<!ELEMENT fs EMPTY >
<!ATTLIST fs
 cmd
 (read|write|open|delete|stat|copy|read_chunk|write_chunk|close|make_dir|del_dir|make_symlink) "write"
 path CDATA #IMPLIED
 size CDATA "1024"
 position CDATA #IMPLIED
 mode (read | write | append) #IMPLIED
 dest CDATA #IMPLIED
>

<!ELEMENT shell EMPTY >
<!ATTLIST shell
 cmd CDATA #REQUIRED
 args CDATA ""
>

<!ELEMENT job EMPTY >
<!ATTLIST job
 type (oar|torque) "oar"
 req (submit|delete|stat|suspend|resume|wait_jobs) #REQUIRED
 script CDATA #IMPLIED
 walltime CDATA #IMPLIED
 duration CDATA #IMPLIED
 jobid CDATA #IMPLIED
 resources CDATA #IMPLIED
 nodes CDATA #IMPLIED
 queue CDATA #IMPLIED
 options CDATA #IMPLIED
 user CDATA #IMPLIED
 name CDATA "tsung"
 notify_port CDATA #IMPLIED
 notify_script CDATA #IMPLIED
>

<!ELEMENT pgsql (#PCDATA) >
<!ATTLIST pgsql
 password CDATA #IMPLIED
 database CDATA #IMPLIED
 username CDATA #IMPLIED
 name_portal CDATA #IMPLIED
 name_prepared CDATA #IMPLIED
 query CDATA #IMPLIED
 parameters CDATA #IMPLIED
 max_rows CDATA "0"
 formats CDATA #IMPLIED
 formats_results CDATA #IMPLIED
 contents_from_file CDATA #IMPLIED
 type (connect | authenticate | sql | close | bind | parse | cancel|call| sync | execute | describe | flush | copy | copydone| copyfail) #REQUIRED >

<!ELEMENT mysql (#PCDATA) >
<!ATTLIST mysql
 password CDATA #IMPLIED
 database CDATA #IMPLIED
 username CDATA #IMPLIED
 type (connect | authenticate | sql | close) #REQUIRED >

<!ELEMENT raw EMPTY >
<!ATTLIST raw
 ack (global | local | no_ack) #REQUIRED
 datasize CDATA #IMPLIED
 data CDATA #IMPLIED>

<!ELEMENT ldap (attr* | modification*) >
<!ATTLIST ldap
 password CDATA #IMPLIED
 user CDATA #IMPLIED
 type (bind | unbind | search | start_tls | add | modify) #REQUIRED
 result_var CDATA #IMPLIED
 filter CDATA #IMPLIED
 base CDATA #IMPLIED
 scope (singleLevel | baseObject | wholeSubtree) #IMPLIED
 cacertfile CDATA #IMPLIED
 keyfile CDATA #IMPLIED
 certfile CDATA #IMPLIED
 dn CDATA #IMPLIED
 >
<!ELEMENT websocket (#PCDATA) >
<!ATTLIST websocket
 type (connect | message | close) #REQUIRED
 ack (no_ack | parse) #IMPLIED
 frame (binary | text) #IMPLIED
 origin CDATA ""
 subprotocols CDATA ""
 path CDATA "/" >

<!ELEMENT amqp (#PCDATA) >
<!ATTLIST amqp
 type CDATA #REQUIRED
 vhost CDATA "/"
 channel CDATA "-1"
 exchange CDATA ""
 routing_key CDATA ""
 payload CDATA ""
 payload_size CDATA "100"
 prefetch_size CDATA "0"
 prefetch_count CDATA "0"
 persistent CDATA "false"
 queue CDATA ""
 timeout CDATA "1"
 ack CDATA "false" >

<!ELEMENT mqtt (#PCDATA) >
<!ATTLIST mqtt
 type CDATA #REQUIRED
 clean_start CDATA "false"
 keepalive CDATA "10"
 will_topic CDATA ""
 will_qos CDATA "0"
 will_msg CDATA ""
 will_retain CDATA "false"
 topic CDATA ""
 qos CDATA "0"
 retained CDATA "false"
 timeout CDATA "1"
 username CDATA ""
 password CDATA "">

<!ELEMENT modification (attr*) >
<!ATTLIST modification
 type CDATA #REQUIRED>

<!ELEMENT attr (value+) >
<!ATTLIST attr
 type CDATA #REQUIRED>

<!ELEMENT value (#PCDATA) >

<!ELEMENT setdynvars (var*) >
<!ATTLIST setdynvars
 sourcetype (random_string | urandom_string | random_number |
 file | erlang | eval| jsonpath | value | server) #REQUIRED
 callback CDATA #IMPLIED
 code CDATA #IMPLIED
 fileid CDATA #IMPLIED
 order (iter | random) #IMPLIED
 delimiter CDATA #IMPLIED
 length CDATA #IMPLIED
 start CDATA #IMPLIED
 end CDATA #IMPLIED
 from CDATA #IMPLIED
 jsonpath CDATA #IMPLIED
 value CDATA #IMPLIED
 >
<!ELEMENT var (#PCDATA) >
<!ATTLIST var
 name CDATA #REQUIRED>

<!ELEMENT for (request | thinktime | transaction | setdynvars | for |
 if | repeat | change_type | foreach | interaction | abort)+>
<!ATTLIST for
 var CDATA #REQUIRED
 from CDATA #REQUIRED
 to CDATA #REQUIRED
 incr NMTOKEN "1">

<!ELEMENT foreach (request | thinktime | transaction | setdynvars | foreach |
 if | repeat | change_type | for | interaction | abort)+>
<!ATTLIST foreach
 name NMTOKEN #REQUIRED
 in NMTOKEN #REQUIRED
 include CDATA #IMPLIED
 exclude CDATA #IMPLIED
>

<!ELEMENT repeat (request | thinktime | transaction | setdynvars | for | repeat
| while | if | until | change_type | foreach | interaction | abort)+>
<!ATTLIST repeat
 name NMTOKEN #REQUIRED
 max_repeat NMTOKEN "20">

<!ELEMENT if (request | thinktime | transaction | setdynvars | for | repeat
| while | if | until | change_type | foreach | interaction | abort)+>
<!ATTLIST if
 var CDATA #REQUIRED
 eq CDATA #IMPLIED
 neq CDATA #IMPLIED
 gt CDATA #IMPLIED
 gte CDATA #IMPLIED
 lt CDATA #IMPLIED
 lte CDATA #IMPLIED >

<!ELEMENT while EMPTY>
<!ATTLIST while
 var CDATA #REQUIRED
 eq CDATA #IMPLIED
 neq CDATA #IMPLIED
 gt CDATA #IMPLIED
 gte CDATA #IMPLIED
 lt CDATA #IMPLIED
 lte CDATA #IMPLIED >

<!ELEMENT until EMPTY>
<!ATTLIST until
 var CDATA #REQUIRED
 eq CDATA #IMPLIED
 neq CDATA #IMPLIED
 gt CDATA #IMPLIED
 gte CDATA #IMPLIED
 lt CDATA #IMPLIED
 lte CDATA #IMPLIED >

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	
 	abort

 	apply_to_content

 	
 	arrivalphase

 	arrivalrate

B

 	
 	batch

C

 	
 	callback

 	change_type

 	
 	client

 	cpu

D

 	
 	delimiter

 	direct ip

 	dtd

 	
 	dumptraffic

 	duration

 	dyn_variable

E

 	
 	emfile

 	
 	encoding

F

 	
 	faq

 	fileid

 	
 	for

 	foreach

G

 	
 	global_ack_timeout

 	
 	global_number

H

 	
 	hibernate

 	
 	host

 	http_use_server_as_proxy

I

 	
 	idle_timeout

 	if

 	interarrival, [1]

 	
 	ip

 	iprange

 	iter

J

 	
 	jabber

 	
 	json

 	jsonpath

L

 	
 	load

 	
 	loglevel

M

 	
 	match

 	max_ssh_startup

 	
 	maxnumber, [1]

 	maxusers

 	munin

O

 	
 	options

 	
 	override

P

 	
 	page

 	
 	presence

 	proxy

R

 	
 	rate_limit

 	record_tag

 	redirect

 	repeat

 	
 	
 RFC

 	RFC 3253

 	RFC 3921

 	RFC 4918

 	RFC 6455

S

 	
 	sample

 	sample_counter

 	sasl plain

 	scan_intf

 	scheduler

 	seed

 	server

 	
 	session

 	setdynvars

 	skip_headers

 	snmp

 	ssl_ciphers

 	ssl_reuse_sessions

 	ssl_versions

 	start_time

T

 	
 	tag

 	tcp_rcv_buffer

 	tcp_snd_buffer

 	thinktime

 	
 	thinktimes

 	ts_http

 	ts_jabber

 	ts_user_server

 	tsung-recorder

U

 	
 	udp_rcv_buffer

 	udp_snd_buffer

 	
 	until

 	use_controller_vm

W

 	
 	weight

 	
 	while

X

 	
 	xpath

 _static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Tsung's documentation!

 		Introduction

 		What is Tsung?

 		What is Erlang and why is it important for Tsung?

 		Tsung background

 		Features

 		Tsung main features

 		HTTP related features

 		WEBDAV related features

 		Jabber/XMPP related features

 		PostgreSQL related features

 		MySQL related features

 		Websocket related features

 		AMQP related features

 		MQTT related features

 		LDAP related features

 		Raw plugin related features

 		Complete reports set

 		Highlights

 		Installation

 		Dependencies

 		Compilation

 		Configuration

 		Running

 		Feedback

 		Benchmark Approach

 		HTTP/WebDAV

 		Benchmarking a Web server

 		WebDAV

 		Benchmarking a proxy server

 		LDAP

 		PostgreSQL

 		MySQL

 		Jabber/XMPP

 		Overview

 		Acknowledgments of messages

 		Authentication

 		Privacy list testing

 		Using the proxy recorder

 		PostgreSQL

 		HTTP and WEBDAV

 		Understanding tsung.xml configuration file

 		File structure

 		Clients and server

 		Basic setup

 		Advanced setup

 		Running Tsung with a job scheduler

 		Monitoring

 		Erlang

 		SNMP

 		Munin

 		Defining the load progression

 		Randomly generated users

 		Statically generated users

 		Duration of the load test

 		Setting options

 		Thinktimes, SSL, Buffers

 		Timeout for TCP connections

 		IP transparent

 		Retry Attempts and Timeouts

 		Timeout for acknowledgments of messages

 		Hibernate

 		Rate_limit

 		Ports_range

 		Setting the seed for random numbers

 		Path for BOSH

 		Websocket options

 		XMPP/Jabber options

 		HTTP options

 		AMQP options

 		Sessions

 		Thinktimes

 		HTTP

 		Jabber/XMPP

 		PostgreSQL

 		MySQL

 		Websocket

 		AMQP

 		MQTT

 		LDAP

 		Mixing session type

 		Raw

 		Advanced Features

 		Dynamic substitutions

 		Reading external file

 		Dynamic variables

 		Checking the server's response

 		Loops, If, Foreach

 		Rate limiting

 		Requests exclusion

 		Client certificate

 		Statistics and Reports

 		File format

 		Available stats

 		HTTP specific stats:

 		Jabber specific stats:

 		OS monitoring stats:

 		Design

 		Generating the report

 		Tsung summary

 		Graphical overview

 		Tsung Plotter

 		RRD

 		References

 		Acknowledgments

 		Frequently Asked Questions

 		Can't start distributed clients: timeout error

 		Tsung crashes when I start it

 		Why do i have error_connect_emfile errors?

 		Tsung still crashes/fails when I start it!

 		Can I dynamically follow redirect with HTTP?

 		What is the format of the stats file tsung.log?

 		How can I compute percentile/quartiles/median for transactions or requests response time?

 		How can I specify the number of concurrent users?

 		SNMP monitoring doesn't work?!

 		How can i simulate a fix number of users?

 		Errors list

 		error_closed

 		error_inet_<ERRORNAME>

 		error_unknown_data

 		error_unknown_msg

 		error_unknown

 		error_repeat_<REPEATNAME>

 		error_send_<ERRORNAME>

 		error_send

 		error_connect_<ERRORNAME>

 		error_no_online

 		error_no_offline

 		error_no_free_userid

 		error_next_session

 		error_mysql_<ERRNO>

 		error_mysql_badpacket

 		error_pgsql

 		Changelog

 		tsung-1.0.dtd

_static/comment.png

_images/connected.png
Simultaneous connections

400

350

300

250

200

150

100

50

Connected Users

— Connected users Qualif
— Connected users Prod

: L L L
60 80 100 120 140

Minutes elapsed

160

_images/ldap-hierarchy.png
Idap_simple.xml (~/process-one/t

Program Settings Help

Browser | Choose plugin || () W *&

Entries Distinguis
~ pablo-desktop
~ dc=pablo-desktop

cn=admin ObjectClass
~ ou=users organizatio
» cn=userl person
R z:’jzzz inetOrgPer:
> Srs Attributes
» cn=jane on
» cn=mary sn

» cn=paul UserPasswor

_images/tsung-graph.png
Response Time

Tramectons Requos 1 consecton abment
u
oot
B request
s
.
;
8 s
i i
:
.
-
:
.
o 100 200 208 493 520 ¢9a 763 208 269100 o 100 200 208 403 520 ¢0a 708 203 269 1063
Throughput
Tramectons Requess
rate rate
<o san
e It T
- - 500 asen Fanes
§ casa
uotee 2500
e)
£ o 1900
: 1000
ae ELL)
. .
o 10 200 330 498 520 €03 720 290 2aa 1008 o' T00 200 320 408 505 620700 50 261803
[r— New U
rate rate
cases @
e g
o aoses [
§ sease 2
2 o000 P

_images/tsung-report.png
Tung (s

version13.0 Main Statistics
Stats Report Tighest T0sec Towest 10sec Highest
Name ost. I est 10 Hohest Mean Count
« Main statistics 0330
« Transactions connect 0,894 msec 0298msec 57035/sec. oo 7647824,
¢ fetwork page 98.32 msec 210 msec 57033 /sec| 222 msec| 7647817
« Counters 0307
: Cowmters request 0432 msec 0283 msec 360526 /sec. oo 50280854,
« HITE status session 12004 sec 12000sec 4165/sec 2% 443050

Graphs Report
Transactions Statistics
Response times

Throughput graphs
Simultaneous Users | Name

highest 10sec lowest 10sec Highest /o= C -

Server monitoring mean mean Rate
HITEstatus tr_login 0101 sec 295msec 6904/sec 2201008484
XML Config file
Network Throughput

Name _Highest Rate _Total
size_rcv 521,40 Mbits/sec 86.44 GB
size_sent 39.10 Mbits/sec 654 GB

Counters Statistics

Name Highest Rate Total number
finish_users count 4165/ sec 446996
newphase 21/sec 612
users_count 681/sec 1105176

Name _ Max
connected| 89288
users 658180

_images/ldap-results.png
Name Highest Rate Total numbe;
finish_users_count 87/ sec 797¢
Idap_bind_error 10.9/ sec 997
Idap_bind_ok 76.1/sec 698

_images/tsung-dashboard.png
Status

Running users
Connested users

Request rate:

Active nodes

Current phase (totalis 9)

Tsung version 1.5
Sontact: tsung-users@process-one.net

_static/comment-close.png

